Exercises 1

This page allows you to practice some exercises on Algebra. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

Question 1

Which of the following statements are true? (a) 350350 is a natural number.

(b) 3-3 is to the right of 1-1 on the number line.

(c) 17-17 is a natural number.

(d) There is no natural number that is not rational.

(e) 3.14153.1415 is not rational.

(f) The sum of two irrational numbers is irrational.

(g) 2/5-2/5 is rational.

(h) All rational numbers are real.

Show answer

(a) True. (b) False, 3-3 is less than 1-1, so this value is located to the left of 1-1 on the number line. (c) False, all natural numbers are positive. This number belongs to the set of integers. (d) True, every natural number is rational. (e) False, since 3.1415=31415/100003.1415 = 31415/10000, i.e. the quotient of two integers. (Note that we are not dealing with π\pi, but solely an approximation to this irrational number). (f) False. An easy counterexample is: 2+(2)=0.\sqrt{2} + (-\sqrt{2}) = 0. (g) True, as it can be written as p/qp/q, where pp and qq are integers, q0q \neq 0. (h) True.

Question 2

Simplify the following expressions: (a) xpx2p x^p x^{2p} , where p p is an integer

(b) ts:ts1 t^s : t^{s-1}, where t0t \neq 0 and ss is an integer

(c) a2b3a1b5a^2 b^3 a^{-1} b^5, where a0a \neq 0

(d) tptq1trts1 \frac{t^p t^{q-1}}{t^r t^{s-1}} , where t0t \neq 0 and p,q,r,sp, q, r, s are integers

Show answer

(a) xpx2p=xp+2p=x3p x^p x^2p = x^{p+2p} = x^{3p}

(b) ts:ts1=ts(s1)=tss+1=t1=tt^s : t^{s-1} = t^{s-(s-1)} = t^{s-s+1} = t^1 = t

(c) a2b3a1b5=a21b3+5=ab8a^2b^3a^{-1}b^5 = a^{2-1} b^{3+5} = ab^8

(d) tptq1trts1=tp+q1(r+s1)=tp+qrs\frac{t^p t^{q-1}}{t^r t^{s-1}} = t^{p+q-1-(r+s-1)} = t^{p+q-r-s}

Question 3

Expand and simplify the following expressions: (a) a4b3(a2b3)2\frac{a^4 b^{-3}}{(a^2 b^{-3})^2}

(b) pγ(pq)σp2γ+σqσ2\frac{p^{\gamma} (pq)^{\sigma}}{p^{2\gamma + \sigma} q^{\sigma - 2}}

(c) (a+1)2(a1)2(b+1)2(b1)2\frac{(a+1)^2 - (a-1)^2}{(b+1)^2 - (b-1)^2}

(d) (a+b)3(a+b)^3

Show answer

(a) a4b3(a2b3)2=a4b3a4b6=b3(6)=b3\frac{a^4 b^{-3}}{(a^2 b^{-3})^2} = \frac{a^4 b^{-3}}{a^4 b^{-6}} = b^{-3 -(-6)} = b^3

(b) pγ(pq)σp2γ+σqσ2=pγq2\frac{p^{\gamma} (pq)^{\sigma}}{p^{2\gamma + \sigma} q^{\sigma - 2}} = p^{-\gamma}q^2

(c) (a+1)2(a1)2(b+1)2(b1)2=a2+2a+1(a22a+1)b2+2b+1(b22b+1)=4a4b=ab\frac{(a+1)^2 - (a-1)^2}{(b+1)^2 - (b-1)^2} = \frac{a^2 +2a + 1 - (a^2 - 2a + 1)}{b^2 +2b + 1 - (b^2 - 2b +1)} = \frac{4a}{4b} = \frac{a}{b}

(d) (a+b)3=(a+b)2(a+b)=(a2+2ab+b2)(a+b)=a3+3a2b+3ab2+b3(a+b)^3 = (a+b)^2 (a+b) = (a^2 + 2ab + b^2)(a+b) = a^3 + 3a^2 b + 3a b^2 + b^3

Question 4

Factor the following expressions:

(a) y210y+25y^2 - 10y + 25

(b) x2y2x^2 - y^2

(c) 16a2+16ab+4b216a^2 + 16ab + 4b^2

(d) z3y4(zy)2+4zy3z^3 y - 4(zy)^2 + 4z y^3

Show answer

(a) (y5)(y5)=(y5)2(y-5)(y-5) = (y-5)^2 (b) (x+y)(xy)(x+y)(x-y) (c) 22(2a+b)(2a+b)=4(2a+b)22 \cdot 2 (2a + b) (2a + b) = 4(2a+b)^2 (d) zy(z2y)(z2y)=zy(z2y)2zy(z - 2y)(z - 2y) = zy(z - 2y)^2

Last updated