This page allows you to practice some exercises on Algebra. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.
These questions correspond to the following sections:
- Section 2.4 - Fractions
- Section 2.5 - Fractional Powers
- Section 2.6 - Inequalities
Question 5
Simplify the following expressions:
(a) 43+34−1
(b) 123−241
(c) 353−154
(d) 53⋅65
(e) (53÷152)⋅91
(f) (32+41)÷(43+23)
(g) 10x−103x+1017x
(h) 10b+2−153b+10b
(i) 3x+2+41−3x
(j) 2b3−3b5
Show answer
(a) 129+1216−1=1225−1212=1213.
(b) 246−241=245.
(c) 518−59=59.
(d) 3015=21.
(e) 1045⋅91=9045=21.
(f) 1211÷49=10844=2711.
(g) 10x−3x+17x=1015x=23x.
(h) 10b+2−2b+b=102=51.
(i) 124(x+2)+3(1−3x)=124x−9x+8+3=121(−5x+11).
(j) 6b3⋅3−5⋅2=−6b1.
Question 6
Cancel common factors in the following expressions:
(a) 625325
(b) 64abc38a2b3c
(c) 3a+3b2a2−2b2
(d) (P+Q)2P3−PQ2
Show answer
(a) 5⋅5⋅5⋅55⋅5⋅13=2513.
(b) 8c2ab2.
(c) 32(a−b).
(d) (P+Q)2P(P+Q)(P−Q)=P+QP(P−Q).
Question 7
Simplify the following expressions:
(a) x−21−x+21
(b) 4x+26x+25−4x2−16x2+x−2
(c) 8ab1−8b(a+2)1
(d) 2t+1t−2t−1t
(e) (41−51)−2
(f) n−1−n1n
(g) 1+xp−q1+1+xq−p1
(h) x−x+12x−11+x2−11
Show answer
(a) x2−44.
(b) 2(2x+1)21.
(c) 4ab(a+2)1.
(d) 4t2−1−2t.
(e) 400.
(f) n−1−n.
(g) 1.
(h) (x−1)21.
Question 8
Verify that x2+2xy−3y2=(x+3y)(x−y), and then simplify the expression:
x2+2xy−3y2x−y−x−y2−x+3y7
Show answer
Note that (x+3y)(x−y)=x2+3xy−xy−3y2=x2+2xy−3y2. We can multiply the last two terms by the appropriate factor to obtain the same denominator as the first term. Some simple algebra leads to x2+2xy−3y2−8x.
Question 9
Compute the following numbers:
(a) 1600
(b) 9+16
(c) (36)−1/2
(d) (0.49)1/2
(e) 1/25
Show answer
(a) 40.
(b) 5.
(c) 61.
(d) 0.7.
(e) 51.
Question 10
Let a and b be positive numbers. Decide whether each ‘‘?" should be replaced by = or =. Justify your answer.
(a) 25⋅16?25⋅16
(b) 25+16?25+16
(c) (a+b)1/2?a1/2+b1/2
(d) (a+b)−1/2?(a+b)−1
Show answer
(a) =, as both expressions equal 20.
(b) =, as 25+16=41=9=25+16.
(c) =, as this is essentially the same problem as in (b). Take a=b=1 as an easy counterexample.
(d) =, note that (a+b)−1/2=[(a+b)1/2]−1=(a+b)−1.
Question 11
Solve for x the following equalities:
(a) x=9
(b) x⋅4=4
(c) x+2=25
(d) 3⋅5=x
(e) 22−x=8
(f) 2x−2x−1=4
Show answer
(a) 81.
(b) 4.
(c) 623.
(d) 15.
(e) −1.
(f) 2x−2x−1=2x−1(2−1)=4 for x=3.
Question 12
Rationalize the denominator and simplify the following expressions:
(a) 76
(b) 232
(c) 654−24
(d) 382
(e) 7+51
(f) 5+35−3
(g) xy+yxxy−yx
(h) 1+x+11−x+1
Show answer
(a) 767.
(b) 4.
(c) 1.
(d) 616.
(e) 21(7−5).
(f) 4−15.
(g) x−y(x−y)2.
(h) x1(2x+1−x−2).
Question 13
Simplify the following expressions, so that each contains only a single exponent:
(a) {[(a1/2)2/3]3/4}4/5
(b) a1/2⋅a2/3⋅a3/4⋅a4/5
(c) {[(3a)−1]−2(2a−2)−1}/a−3
(d) a5/12⋅a3a⋅a1/12⋅4a3
Show answer
(a) a1/5.
(b) a163/60.
(c) 9a7/2.
(d) a1/4.
Question 14
Decide which of the following inequalities are true:
(a) −6.15>−7.16
(b) 6≥6
(c) (−5)2≤0
(d) −21π<−31π
(e) 54>76
(f) 23<32
(g) 2−3<3−2
(h) 21−32<41−31
Show answer
True: (a), (b), (d), (f).
False: (c), (e), (g).
Question 15
Find what values of x satisfy the following inequalities:
(a) 3x+5<x−13
(b) 3x−(x−1)≥x−(1−x)
(c) 24x−(x+1)+83x<125(x+1)
(d) 1≤31(2x−1)+38(1−x)<16
(e) −5<x1<0
Show answer
(a) x<−9.
(b) All x.
(c) x>−17/12.
(d) −41/6<x≤2/3.
(e) x<−1/5.
Question 16
Fill in each “?” with “⇒”, “⇐”, or “⇔” in order to complete a true statement:
(a) x(x+3)<0?x>−3
(b) x2<9?x<3
(c) x2>0?x>0
(d) x>y2?x>0
Show answer
(a) ⟹
(b) ⟹
(c) ⟸
(d) ⟹
Question 17
Decide whether the following inequalities are valid for allx and y. If not, specify exactly the values of x and y for which the relation holds.
(a) x+1>x
(b) x2>x
(c) x+x>x
(d) x2+y2≥2xy
Show answer
(a) Yes.
(b) No, this is not true for x∈(−1,1).
(c) No, not true for x≤0.
(d) Yes, because the inequality is equivalent to (x−y)2=x2−2xy+y2≥0, which holds for all x and y.