dumbbellExercises 4

This page allows you to practice some exercises on Differentiation. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

circle-exclamation

Question 25

Find the first-order derivatives w.r.t. xx of:

(a) y=5ex3x3+8y = 5e^x − 3x^3 + 8

(b) y=xexy = \frac{x}{e^x}

(c) y=x+x2ex+1y = \frac{x + x^2}{e^x + 1}

(d) y=x3exy = x^3 e^x

(e) y=(x+ex)2y = (x + e^x)^2

(f) y=(ax+bx2)2exy = \frac{(ax + bx^2)^2}{e^x} , with a,ba,b constants

chevron-rightShow answerhashtag

(a) y=5ex9x2y' = 5e^{x} − 9x^{2}.

(b) y=(1exxex)/e2x=(1x)exy' = (1 · e^x − x e^x )/e^{2x} = (1 − x)e^{−x}

(c) y=[(1+2x)(ex+1)(x+x2)ex]/(ex+1)2y' = [(1 + 2x)(e^x + 1) − (x + x^2 )e^x ]/(e^x + 1)^2

         =[1+2x+ex(1+xx2)]/(ex+1)2\ \ \ \ \ \ \ \ \ = [1 + 2x + e^x(1 + x − x^2 )]/(e^x + 1)^2.

(d) y=x3ex+3x2ex=x2ex(3+x)y' = x^{3} e^{x} + 3x^{2} e^{x} = x^2 e^x (3 + x).

(e) y=2(x+ex)(1+ex)y' = 2(x + e^x )(1 + e^x).

(f) y=[2(ax+bx2)(a+2bx)ex(ax+bx2)2ex]/(ex)2y' = [2(ax + bx^2)(a + 2bx)e^{x} − (ax + bx^{2})^2 e^{x}]/(e^{x})^2

         =[x(a+bx)(bx2+(4ba)x+2a)]ex\ \ \ \ \ \ \ \ \ = [x(a + bx)(−bx^{2} + (4b − a)x + 2a)]e^{−x}.

Question 26

Find the following derivatives:

(a) yy' and yy'' for y=e1/xy = e^{1/x}

(b) yy' and yy'' for y=5e2x23x+1y = 5e^{2x^2 −3x+1}

(c) ddxe(ex)\frac{\text{d}}{\text{d}x} e^{(e^x)}

(d) ddt(1(et+et))\frac{\text{d}}{\text{d}t} \left( \frac{1}{(e^t + e^{−t})} \right)

(e) ddx x2x\frac{\text{d}}{\text{d}x} \ x2^x

(f) yy' for y=x22x2y = x^2 2^{x^2}

(g) yy' for y=ex10xy = e^x 10^x

chevron-rightShow answerhashtag

(a) y=x2e1/xy' = −x^{−2} e^{1/x} and y=x4e1/x(2x+1)y'' = x^{−4} e^{1/x} (2x + 1).

(b) y=5(4x3)e2x23x+1y' = 5(4x − 3)e^{2x^2 −3x+1} and y=5e2x23x+1(16x224x+13)y'' = 5e^{2x^{2} −3x+1}(16x^2 − 24x + 13).

(c) ddxe(ex)=eexex=eex+1\frac{\text{d}}{\text{d}x} e^{(e^x)} = e^{e^{x}} \cdot e^{x} = e^{e^{x} + 1}.

(d) ddt(1(et+et))=12(et/2et/2)\frac{\text{d}}{\text{d}t} \left( \frac{1}{(e^t + e^{−t})} \right) = \frac{1}{2}(e^{t/2} − e^{−t/2}).

(e) ddx x2x=2x+x2xln2=2x(1+xln2)\frac{\text{d}}{\text{d}x} \ x2^x = 2^{x} + x 2^{x} \ln 2 = 2^x (1 + x \ln 2).

(f) y=2x2x2(1+x2ln2)y' = 2x 2^{x^2} (1 + x^{2} \ln 2).

(g) y=ex10x+ex10xln10=ex10x(1+ln10) y' = e^{x} 10^{x} + e^{x}10^{x} \ln 10 = e^{x}10^{x} (1 + \ln 10).

Question 27

Find the intervals where the following functions are increasing:

(a) y=x3+e2xy = x^3 + e^{2x}

(b) y=5x2e4xy = 5x^2 e^{−4x}

(c) y=exe3xy = e^x − e^{3x}

chevron-rightShow answerhashtag

(a) y=3x2+2e2xy' = 3x^{2} + 2e^{2x}. Since 3x203x^{2} \geq 0 for all xx and e2x>0e^{2x} > 0 for all xx, 2e2x>02e^{2x} > 0 for all xx, so y>0y' > 0 for all xx, so yy is increasing in (,)(−\infty, \infty).

(b) y=e4x(10x20x2)=10x(12x)e4xy' = e^ {−4x} (10x−20x^{2}) = 10x(1−2x)e^{−4x}. Since e4x>0e^{-4x} > 0 for all xx, the sign of yy' depends on 10x(12x)10x(1-2x). The critical points can be found by setting this expression equal to zero, which yields x=0x=0 and x=1/2x = 1/2. From this, we can easily deduce that yy is increasing in the interval [0,1/2][0, 1/2].

(c) y=ex(13e2x)y' = e^{x}(1 − 3e^{2x}). Since ex>0e^{x} > 0 for all xx, we need to solve for what values of xx 13e2x>01 - 3e^{2x} > 0. This yields x<12ln3x < -\frac{1}{2}\ln 3. Thus, yy is increasing in (,12ln3](−\infty, −\frac{1}{2} \ln 3].

Question 28

Compute the first and second derivatives of:

(a) y=lnx+3x2y = \ln x + 3x − 2

(b) y=x3lnxy = x^3 \ln x

(c) y=lnxxy = \frac{\ln x}{x}

(d) y=x3(lnx)2y = x^3 (\ln x)^2

(e) y=x2lnxy = \frac{x^2}{\ln x}

chevron-rightShow answerhashtag

(a) y=1/x+3y' = 1/x + 3 and y=1/x2y'' = -1/x^{2}.

(b) y=3x2lnx+x3x1=3x2lnx+x2y' = 3x^{2} \ln x + x^{3} \cdot x^{-1} = 3x^{2} \ln x + x^{2}, and the second derivative is given by y=6xlnx+3x2x1+2x=x(6lnx+5)y'' = 6x \ln x + 3x^{2} \cdot x^{-1} + 2x = x(6 \ln x + 5).

(c) y=(1lnx)/x2y' = (1 − \ln x)/x^2 and y=(2lnx3)/x3y'' = (2 \ln x − 3)/x^3 after applying the quotient rule.

(d) y=3x2(lnx)2+2lnxx1x3=x2lnx(3lnx+2)y' = 3x^{2}(\ln x)^{2} + 2 \ln x \cdot x^{-1} \cdot x^{3} = x^{2} \ln x (3 \ln x + 2) and y=6x(lnx)2+10xlnx+2xy '' = 6x(\ln x)^2 + 10x \ln x + 2x.

(e) y=[lnx2xx2x1]/(lnx)2=x(2lnx1)/(lnx)2y' = [\ln x \cdot 2x - x^{2} \cdot x^{-1}]/(\ln x)^{2} = x(2 \ln x − 1)/(\ln x)^2 and y=2(lnx)33(lnx)2+2lnx(lnx)4y'' = \frac{2(\ln x)^{3} - 3 (\ln x)^{2} + 2 \ln x}{(\ln x)^{4}}. (Getting the second derivative requires some tedious algebra).

Question 29

Find the derivative of:

(a) y=ln(lnx)y = \ln(\ln x)

(b) y=ln1x2 y = \ln \sqrt{1 − x^2}

(c) y=ex3lnx2y = e^{x^3} \ln x^2

chevron-rightShow answerhashtag

(a) y=1lnx(1/x)=1xlnxy' = \frac{1}{\ln x} \cdot (1/x) = \frac{1}{x\ln x}, using the chain rule.

(b) y=ln1x2=12ln(1x2)y = \ln\sqrt{1 - x^{2}} = \frac{1}{2}\ln (1- x^{2}). So, y=12(1x2)12x=x(1x2)y' = \frac{1}{2} (1-x^{2})^{-1} \cdot -2x = -\frac{x}{(1-x^{2})}, using the chain rule.

(c) We can apply the product and chain rule to obtain: y=ex32x+lnx23x2ex3y' = e^{x^{3}} \cdot \frac{2}{x} + \ln x^{2} \cdot 3x^{2} e^{x^{3}}. This can be rewritten as y=ex3(3x2lnx2+2x)=2ex3(3x2lnx+1x)y' = e^{x^{3}} \left(3x^{2} \ln x^{2} + \frac{2}{x}\right) = 2e^{x^{3}} \left(3 x^{2} \ln x + \frac{1}{x} \right).

Remark: It is not done in this solution, but note that you can also rewrite yy as y=2ex3lnxy = 2e^{x^{3}}\ln x and then proceed to take the first derivative. You could verify that this yields the same solution.

Question 30

Determine the domains of the functions defined by:

(a) y=ln(x+1)y = \ln(x + 1)

(b) y=ln(3x11x)y = \ln \left(\frac{3x − 1}{1 − x} \right)

(c) y=lnxy = \ln |x|

(d) y=ln(lnx)y = \ln(\ln x)

(e) y=1ln(lnx)1y = \frac{1}{\ln(\ln x) - 1}

chevron-rightShow answerhashtag

Note that lnz\ln z is only defined for z>0z > 0. We can use this result to solve the following questions.

(a) y=ln(x+1)y = \ln(x +1), so x+1>0 x + 1 > 0 for x>1x > -1.

(b) The critical points can be found by solving 3x1=03x - 1 = 0 and 1x=01 - x = 0, which gives x=13x= \frac{1}{3} and x=1x = 1. For those values, the function is not defined. For x<13x < \frac{1}{3}, we evaluate the ln\ln function at a negative value, so the function is not defined. This is also the case for x>1x > 1. Thus, the function is only defined for 13<x<1\frac{1}{3} < x < 1.

(c) For all x0x \neq 0, we ensure that the function argument is strictly positive.

(d) We need x>0x > 0 for the inner ln\ln function to be defined. However, this is not enough. We also need the input of the outer ln\ln function to be positive. Note that lnx>0\ln x > 0 for x>1x > 1, which is the domain we seek.

(e) From (d) we know that we need x>1x > 1 for ln(lnx)\ln(\ln x) to be defined. We only have to exclude the case in which the denominator reduces to zero. This happens for x=eex = e^{e}, which should thus be excluded. Thus, the domain is x>1,xeex > 1, x \neq e^{e}.

Question 31

Find the intervals where the following functions are increasing:

(a) y=ln(4x2)y = \ln(4 − x^2)

(b) y=x3lnxy = x^3 \ln x

(c) y=(1lnx)22xy = \frac{(1 − \ln x)^2}{2x}

chevron-rightShow answerhashtag

(a) yy is defined only in (2,2)(−2, 2), where y=2x/(4x2)>0y' = −2x/(4 − x^2) > 0 if and only if x<0x < 0. Thus, yy is increasing in (2,0](−2, 0].

(b) yy is defined for x>0x > 0, where y=x2(3lnx+1)>0y' = x^2 (3 \ln x + 1) > 0 if and only if lnx>1/3\ln x > −1/3. Thus, yy is increasing in [e1/3,)[e^{−1/3} , \infty).

(c) yy is defined for x>0x > 0. y=(1lnx)(lnx3)/2x2>0y' = (1 − \ln x)(\ln x − 3)/2x^2 > 0 if and only if 1<lnx<31 < \ln x < 3. Thus, yy is increasing in [e,e3][e, e^3].

Question 32

Differentiate the following functions using logarithmic differentiation:

(a) y=(2x)xy = (2x)^x

(b) y=xxy = x^{\sqrt{x}}

(c) y=(x)xy =(\sqrt{x})^{x}

chevron-rightShow answerhashtag

We provide an elaborate answer for (a). The remaining questions can be solved analogously.

(a) Note that lny=xln(2x)\ln y = x \ln(2x). If we take the derivative w.r.t xx on both sides, we obtain

1ydydx=ddxxln(2x)\frac{1}{y} \frac{\text{d}y}{\text{d}x} = \frac{\text{d}}{\text{d}x} x\ln(2x). The derivative on the righthand side reduces to the expression:

ddxxln(2x)=ln(2x)+x12x2=ln(2x)+1\frac{\text{d}}{\text{d}x} x\ln(2x) = \ln(2x) + x \cdot \frac{1}{2x} \cdot 2 = \ln(2x) + 1. Now we should note that

dydx=ddxyxln(2x)\frac{\text{d}y}{\text{d}x} = \frac{\text{d}}{\text{d}x} y x\ln(2x). Since y=(2x)xy = (2x)^{x}, we obtain y=(2x)x(1+ln2+lnx)y' = (2x)^x (1 + \ln 2 + \ln x) by also noting ln(2x)=ln2+lnx\ln(2x) = \ln 2 + \ln x.

(b) xx12(12lnx+1)x^{\sqrt{x} − \frac{1}{2}} \left(\frac{1}{2} \ln x + 1 \right).

(c) 12(x)x(lnx+1)\frac{1}{2} (\sqrt{x})^{x} (\ln x + 1).

Last updated