Exercises 4

This page allows you to practice some exercises on Differentiation. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

Question 25

Find the first-order derivatives w.r.t. xx of:

(a) y=5ex3x3+8y = 5e^x − 3x^3 + 8

(b) y=xexy = \frac{x}{e^x}

(c) y=x+x2ex+1y = \frac{x + x^2}{e^x + 1}

(d) y=x3exy = x^3 e^x

(e) y=(x+ex)2y = (x + e^x)^2

(f) y=(ax+bx2)2exy = \frac{(ax + bx^2)^2}{e^x} , with a,ba,b constants

Show answer

(a) y=5ex9x2y' = 5e^{x} − 9x^{2}.

(b) y=(1exxex)/e2x=(1x)exy' = (1 · e^x − x e^x )/e^{2x} = (1 − x)e^{−x}

(c) y=[(1+2x)(ex+1)(x+x2)ex]/(ex+1)2y' = [(1 + 2x)(e^x + 1) − (x + x^2 )e^x ]/(e^x + 1)^2

         =[1+2x+ex(1+xx2)]/(ex+1)2\ \ \ \ \ \ \ \ \ = [1 + 2x + e^x(1 + x − x^2 )]/(e^x + 1)^2.

(d) y=x3ex+3x2ex=x2ex(3+x)y' = x^{3} e^{x} + 3x^{2} e^{x} = x^2 e^x (3 + x).

(e) y=2(x+ex)(1+ex)y' = 2(x + e^x )(1 + e^x).

(f) y=[2(ax+bx2)(a+2bx)ex(ax+bx2)2ex]/(ex)2y' = [2(ax + bx^2)(a + 2bx)e^{x} − (ax + bx^{2})^2 e^{x}]/(e^{x})^2

         =[x(a+bx)(bx2+(4ba)x+2a)]ex\ \ \ \ \ \ \ \ \ = [x(a + bx)(−bx^{2} + (4b − a)x + 2a)]e^{−x}.

Question 26

Find the following derivatives:

(a) yy' and yy'' for y=e1/xy = e^{1/x}

(b) yy' and yy'' for y=5e2x23x+1y = 5e^{2x^2 −3x+1}

(c) ddxe(ex)\frac{\text{d}}{\text{d}x} e^{(e^x)}

(d) ddt(1(et+et))\frac{\text{d}}{\text{d}t} \left( \frac{1}{(e^t + e^{−t})} \right)

(e) ddx x2x\frac{\text{d}}{\text{d}x} \ x2^x

(f) yy' for y=x22x2y = x^2 2^{x^2}

(g) yy' for y=ex10xy = e^x 10^x

Show answer

(a) y=x2e1/xy' = −x^{−2} e^{1/x} and y=x4e1/x(2x+1)y'' = x^{−4} e^{1/x} (2x + 1).

(b) y=5(4x3)e2x23x+1y' = 5(4x − 3)e^{2x^2 −3x+1} and y=5e2x23x+1(16x224x+13)y'' = 5e^{2x^{2} −3x+1}(16x^2 − 24x + 13).

(c) ddxe(ex)=eexex=eex+1\frac{\text{d}}{\text{d}x} e^{(e^x)} = e^{e^{x}} \cdot e^{x} = e^{e^{x} + 1}.

(d) ddt(1(et+et))=12(et/2et/2)\frac{\text{d}}{\text{d}t} \left( \frac{1}{(e^t + e^{−t})} \right) = \frac{1}{2}(e^{t/2} − e^{−t/2}).

(e) ddx x2x=2x+x2xln2=2x(1+xln2)\frac{\text{d}}{\text{d}x} \ x2^x = 2^{x} + x 2^{x} \ln 2 = 2^x (1 + x \ln 2).

(f) y=2x2x2(1+x2ln2)y' = 2x 2^{x^2} (1 + x^{2} \ln 2).

(g) y=ex10x+ex10xln10=ex10x(1+ln10) y' = e^{x} 10^{x} + e^{x}10^{x} \ln 10 = e^{x}10^{x} (1 + \ln 10).

Question 27

Find the intervals where the following functions are increasing:

(a) y=x3+e2xy = x^3 + e^{2x}

(b) y=5x2e4xy = 5x^2 e^{−4x}

(c) y=exe3xy = e^x − e^{3x}

Show answer

(a) y=3x2+2e2xy' = 3x^{2} + 2e^{2x}. Since 3x203x^{2} \geq 0 for all xx and e2x>0e^{2x} > 0 for all xx, 2e2x>02e^{2x} > 0 for all xx, so y>0y' > 0 for all xx, so yy is increasing in (,)(−\infty, \infty).

(b) y=e4x(10x20x2)=10x(12x)e4xy' = e^ {−4x} (10x−20x^{2}) = 10x(1−2x)e^{−4x}. Since e4x>0e^{-4x} > 0 for all xx, the sign of yy' depends on 10x(12x)10x(1-2x). The critical points can be found by setting this expression equal to zero, which yields x=0x=0 and x=1/2x = 1/2. From this, we can easily deduce that yy is increasing in the interval [0,1/2][0, 1/2].

(c) y=ex(13e2x)y' = e^{x}(1 − 3e^{2x}). Since ex>0e^{x} > 0 for all xx, we need to solve for what values of xx 13e2x>01 - 3e^{2x} > 0. This yields x<12ln3x < -\frac{1}{2}\ln 3. Thus, yy is increasing in (,12ln3](−\infty, −\frac{1}{2} \ln 3].

Question 28

Compute the first and second derivatives of:

(a) y=lnx+3x2y = \ln x + 3x − 2

(b) y=x3lnxy = x^3 \ln x

(c) y=lnxxy = \frac{\ln x}{x}

(d) y=x3(lnx)2y = x^3 (\ln x)^2

(e) y=x2lnxy = \frac{x^2}{\ln x}

Show answer

(a) y=1/x+3y' = 1/x + 3 and y=1/x2y'' = -1/x^{2}.

(b) y=3x2lnx+x3x1=3x2lnx+x2y' = 3x^{2} \ln x + x^{3} \cdot x^{-1} = 3x^{2} \ln x + x^{2}, and the second derivative is given by y=6xlnx+3x2x1+2x=x(6lnx+5)y'' = 6x \ln x + 3x^{2} \cdot x^{-1} + 2x = x(6 \ln x + 5).

(c) y=(1lnx)/x2y' = (1 − \ln x)/x^2 and y=(2lnx3)/x3y'' = (2 \ln x − 3)/x^3 after applying the quotient rule.

(d) y=3x2(lnx)2+2lnxx1x3=x2lnx(3lnx+2)y' = 3x^{2}(\ln x)^{2} + 2 \ln x \cdot x^{-1} \cdot x^{3} = x^{2} \ln x (3 \ln x + 2) and y=6x(lnx)2+10xlnx+2xy '' = 6x(\ln x)^2 + 10x \ln x + 2x.

(e) y=[lnx2xx2x1]/(lnx)2=x(2lnx1)/(lnx)2y' = [\ln x \cdot 2x - x^{2} \cdot x^{-1}]/(\ln x)^{2} = x(2 \ln x − 1)/(\ln x)^2 and y=2(lnx)33(lnx)2+2lnx(lnx)4y'' = \frac{2(\ln x)^{3} - 3 (\ln x)^{2} + 2 \ln x}{(\ln x)^{4}}. (Getting the second derivative requires some tedious algebra).

Question 29

Find the derivative of:

(a) y=ln(lnx)y = \ln(\ln x)

(b) y=ln1x2 y = \ln \sqrt{1 − x^2}

(c) y=ex3lnx2y = e^{x^3} \ln x^2

Show answer

(a) y=1lnx(1/x)=1xlnxy' = \frac{1}{\ln x} \cdot (1/x) = \frac{1}{x\ln x}, using the chain rule.

(b) y=ln1x2=12ln(1x2)y = \ln\sqrt{1 - x^{2}} = \frac{1}{2}\ln (1- x^{2}). So, y=12(1x2)12x=x(1x2)y' = \frac{1}{2} (1-x^{2})^{-1} \cdot -2x = -\frac{x}{(1-x^{2})}, using the chain rule.

(c) We can apply the product and chain rule to obtain: y=ex32x+lnx23x2ex3y' = e^{x^{3}} \cdot \frac{2}{x} + \ln x^{2} \cdot 3x^{2} e^{x^{3}}. This can be rewritten as y=ex3(3x2lnx2+2x)=2ex3(3x2lnx+1x)y' = e^{x^{3}} \left(3x^{2} \ln x^{2} + \frac{2}{x}\right) = 2e^{x^{3}} \left(3 x^{2} \ln x + \frac{1}{x} \right).

Remark: It is not done in this solution, but note that you can also rewrite yy as y=2ex3lnxy = 2e^{x^{3}}\ln x and then proceed to take the first derivative. You could verify that this yields the same solution.

Question 30

Determine the domains of the functions defined by:

(a) y=ln(x+1)y = \ln(x + 1)

(b) y=ln(3x11x)y = \ln \left(\frac{3x − 1}{1 − x} \right)

(c) y=lnxy = \ln |x|

(d) y=ln(lnx)y = \ln(\ln x)

(e) y=1ln(lnx)1y = \frac{1}{\ln(\ln x) - 1}

Show answer

Note that lnz\ln z is only defined for z>0z > 0. We can use this result to solve the following questions.

(a) y=ln(x+1)y = \ln(x +1), so x+1>0 x + 1 > 0 for x>1x > -1.

(b) The critical points can be found by solving 3x1=03x - 1 = 0 and 1x=01 - x = 0, which gives x=13x= \frac{1}{3} and x=1x = 1. For those values, the function is not defined. For x<13x < \frac{1}{3}, we evaluate the ln\ln function at a negative value, so the function is not defined. This is also the case for x>1x > 1. Thus, the function is only defined for 13<x<1\frac{1}{3} < x < 1.

(c) For all x0x \neq 0, we ensure that the function argument is strictly positive.

(d) We need x>0x > 0 for the inner ln\ln function to be defined. However, this is not enough. We also need the input of the outer ln\ln function to be positive. Note that lnx>0\ln x > 0 for x>1x > 1, which is the domain we seek.

(e) From (d) we know that we need x>1x > 1 for ln(lnx)\ln(\ln x) to be defined. We only have to exclude the case in which the denominator reduces to zero. This happens for x=eex = e^{e}, which should thus be excluded. Thus, the domain is x>1,xeex > 1, x \neq e^{e}.

Question 31

Find the intervals where the following functions are increasing:

(a) y=ln(4x2)y = \ln(4 − x^2)

(b) y=x3lnxy = x^3 \ln x

(c) y=(1lnx)22xy = \frac{(1 − \ln x)^2}{2x}

Show answer

(a) yy is defined only in (2,2)(−2, 2), where y=2x/(4x2)>0y' = −2x/(4 − x^2) > 0 if and only if x<0x < 0. Thus, yy is increasing in (2,0](−2, 0].

(b) yy is defined for x>0x > 0, where y=x2(3lnx+1)>0y' = x^2 (3 \ln x + 1) > 0 if and only if lnx>1/3\ln x > −1/3. Thus, yy is increasing in [e1/3,)[e^{−1/3} , \infty).

(c) yy is defined for x>0x > 0. y=(1lnx)(lnx3)/2x2>0y' = (1 − \ln x)(\ln x − 3)/2x^2 > 0 if and only if 1<lnx<31 < \ln x < 3. Thus, yy is increasing in [e,e3][e, e^3].

Question 32

Differentiate the following functions using logarithmic differentiation:

(a) y=(2x)xy = (2x)^x

(b) y=xxy = x^{\sqrt{x}}

(c) y=(x)xy =(\sqrt{x})^{x}

Show answer

We provide an elaborate answer for (a). The remaining questions can be solved analogously.

(a) Note that lny=xln(2x)\ln y = x \ln(2x). If we take the derivative w.r.t xx on both sides, we obtain

1ydydx=ddxxln(2x)\frac{1}{y} \frac{\text{d}y}{\text{d}x} = \frac{\text{d}}{\text{d}x} x\ln(2x). The derivative on the righthand side reduces to the expression:

ddxxln(2x)=ln(2x)+x12x2=ln(2x)+1\frac{\text{d}}{\text{d}x} x\ln(2x) = \ln(2x) + x \cdot \frac{1}{2x} \cdot 2 = \ln(2x) + 1. Now we should note that

dydx=ddxyxln(2x)\frac{\text{d}y}{\text{d}x} = \frac{\text{d}}{\text{d}x} y x\ln(2x). Since y=(2x)xy = (2x)^{x}, we obtain y=(2x)x(1+ln2+lnx)y' = (2x)^x (1 + \ln 2 + \ln x) by also noting ln(2x)=ln2+lnx\ln(2x) = \ln 2 + \ln x.

(b) xx12(12lnx+1)x^{\sqrt{x} − \frac{1}{2}} \left(\frac{1}{2} \ln x + 1 \right).

(c) 12(x)x(lnx+1)\frac{1}{2} (\sqrt{x})^{x} (\ln x + 1).

Last updated