Exercises 2

This page allows you to practice some exercises on Differentiation. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

Question 6

Determine the following limits by using rules for limits. (a) limx0(3+2x2)\lim_{x \to 0} (3 + 2x^{2})

(b) limt8(5t+t218t3)\lim_{t \to 8} (5t + t^2 - \frac{1}{8}t^{3})

(c) limz21/z+2z\lim_{z \to -2} \frac{1/z + 2}{z}

(d) limy0(y+1)5y5y+1\lim_{y \to 0} \frac{(y + 1)^{5} - y^{5}}{y+1}

(e) limλ01λ(3λ2λ)\lim_{\lambda \to 0} \frac{1}{\lambda} (3^{\lambda} - 2^{\lambda})

(f) limx1x2+7x8x1\lim_{x \to 1} \frac{x^2 + 7x - 8}{x - 1}

Show answer

(a) 33.

(b) 4040.

(c) 3/4-3/4.

(d) 11.

(e) 0.40550.4055 (or more precisely ln(3/2)\ln(3/2). You could evaluate this limit in different ways: e.g. using a Taylor expansion for small λ\lambda or using l'Hôpital's rule. Let's provide a small sketch of both solutions:

  1. For small λ\lambda, aλ1+λlnaa^{\lambda} \approx 1 + \lambda \ln a. Thus 3λ2λλ(ln3ln2)3^{\lambda} - 2^{\lambda} \approx \lambda (\ln 3 - \ln 2). Plug this into the expression and we readily obtain that the limit is ln(3/2)\ln(3/2).

  2. We can define f(λ)=3λ2λf(\lambda) = 3^{\lambda} - 2^{\lambda} and g(λ)=λg(\lambda) = \lambda. Then f(0)=g(0)=0f(0) = g(0) = 0. L'Hôpital's rule now states that limλ0f(λ)g(λ)=f(0)g(0)\lim_{\lambda \to 0} \frac{f(\lambda)}{g(\lambda)} = \frac{f'(0)}{g'(0)}. Evaluating this expression readily yields the desired limit.

L'Hôpital's rule will be one of the topics that you'll get familiar with during the bachelor programme. If you already want to read more about it, you can check out Section 7.12 in Essential Mathematics for Economic Analysis.

(f) x2+7x8=(x1)(x+8)x^2 + 7x -8 = (x-1)(x+8), so limx1x2+7x8(x1)=limx1x+8=9\lim_{x \to 1} \frac{x^2 +7x -8}{(x-1)} = \lim_{x \to 1} x+8 = 9.

Question 7

Compute the following limits.

(a) limx0x3+3x22xx\lim_{x \to 0} \frac{x^3 + 3x^2 - 2x}{x}

(b) limh0(x+h)3x3h\lim_{h \to 0} \frac{(x+h)^3 - x^{3}}{h}

(c) limx0(x+h)3x3h\lim_{x \to 0} \frac{(x+h)^{3} - x^{3}}{h}

(d) limx0x21x2\lim_{x \to 0} \frac{x^2 - 1}{x^2}

(e) limh0h+33h\lim_{h \to 0} \frac{\sqrt{h+3} - \sqrt{3}}{h}

(f) limt2t24t2+10t+16\lim_{t \to -2} \frac{t^2 - 4}{t^2 + 10t + 16}

(g) limx42x4x\lim_{x \to 4} \frac{2 - \sqrt{x}}{4-x}

Show answer

(a) limx0x2+3x2=2\lim_{x \to 0} x^2 + 3x -2 = -2.

(b) limh0(x+h)3x3h=limh03x2+3hx+h2=3x2\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} 3x^2 + 3hx + h^2 = 3x^2.

(c) limx0(x+h)3x3h=limh03x2+3hx+h2=h2.\lim_{x \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} 3x^2 + 3hx + h^2 = h^2.

(d) limx011x2=\lim_{x \to 0} 1 - \frac{1}{x^2} = -\infty, in other words, the limit does not exist.

(e) limh0h+33h×h+3+3h+3+3=limh01h+3+3=123\lim_{h \to 0} \frac{\sqrt{h + 3} - \sqrt{3}}{h} \times \frac{\sqrt{h + 3} + \sqrt{3}}{\sqrt{h + 3} + \sqrt{3}} = \lim_{h \to 0} \frac{1}{\sqrt{h+3} + \sqrt{3}} = \frac{1}{2\sqrt{3}}. Or equivalently, 3/6\sqrt{3}/6.

(f) Note that t24=(t+2)(t2)t^2 - 4 = (t+2)(t-2) and t2+10t+16=(t+8)(t+2)t^2 + 10t +16 = (t+8)(t+2). So an equivalent expression is limt2t2t+8=4/6=2/3\lim_{t \to -2} \frac{t-2}{t+8} = -4/6 = -2/3.

(g) Note that 4x=(2x)(2+x)4 - x = (2 - \sqrt{x})(2 + \sqrt{x}). So we can write the exercise equivalently as limx412x=1/4\lim_{x \to 4} \frac{1}{2\sqrt{x}} = 1/4.

Question 8

Compute the derivatives of the following functions.

(a) y=9x10y = 9x^{10}

(b) y=π7y = \pi^{7}

(c) y=4x7y = -4x^{-7}

(d) y=2x2y = \frac{-2}{x^{2}}

(e) y=3x3y = \frac{3}{\sqrt[3]{x}}

(f) y=2xxy = \frac{-2}{x\sqrt{x}}

Show answer

(a) 90x990x^9.

(b) 00.

(c) 28x828x^{-8}.

(d) 4x34x^{-3}.

(e) x4/3-x^{-4/3}.

(f) 3x5/23x^{-5/2}.

Question 9

Suppose we know g(x)g'(x). Find expressions for the derivatives of the following:

(a) 2g(x)+32g(x) + 3 \qquad(b) g(x)53\frac{g(x) - 5}{3}

Show answer

(a) 2g(x)2g' (x).

(b) 13g(x)\frac{1}{3} g'(x).

Question 10

For each of the following functions, find a function F(x)F(x) having f(x)f(x) as its derivative - that is, find a function that satisfies F(x)=f(x)F'(x) = f(x).

(a) f(x)=x2f(x) = x^{2} \qquad(b) f(x)=2x+3f(x) = 2x + 3 \qquad(c) f(x)=xaf(x) = x^{a}, for a1a \neq -1

Show answer

(a) F(x)=13x3+CF(x) = \frac{1}{3}x^3 + C.

(b) F(x)=x2+3x+C.F(x) = x^2 + 3x + C.

(c) F(x)=1a+1xa+1+C.F(x) = \frac{1}{a+1}x^{a+1} + C.

Question 11

The following limits are all of the form limh0[f(a+h)f(a)]/h\lim_{h \to 0} [f(a+h) - f(a)]/h. Use your knowledge of derivatives to find the limits.

(a) limh0(5+h)252h\lim_{h \to 0} \frac{(5+h)^{2} - 5^{2}}{h} \qquad(b) lims0(s+1)51s\lim_{s \to 0} \frac{(s+1)^{5} - 1}{s} \qquad(c) limh05(x+h)2+105x210h\lim_{h \to 0} \frac{5(x+h)^{2} + 10 - 5x^{2} - 10}{h}

Show answer

(a) With f(x)=x2f (x) = x^2 and a=5a = 5, one has limh0(5+h)252h=limh0f(a+h)f(a)h=f(a)=f(5)\lim_{h \to 0} \frac{(5 + h)^{2} − 5^2}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) = f'(5). Since f(x)=2xf'(x) = 2x, we have f(5)=10f'(5) = 10 and thus the limit is 1010.

(b) Let f(x)=x5f (x) = x^5. Then f(x)=5x4f' (x) = 5x^4 , and the limit is equal to f(1)=514=5f'(1) = 5 \cdot 1^4 = 5, based on the same argument as in (a).

(c) Let f(x)=5x2+10f (x) = 5x^2 + 10. Then f(x)=10xf'(x) = 10x, and this is the value of the limit. (Note that hh goes to zero, not xx. There is no specific value aa).

Question 12

Differentiate the following functions with respect to xx.

(a) f(x)=3x5+2x4+5f(x) = 3x^{5} + 2x^{4} + 5

(b) f(x)=8x4+2xf(x) = 8x^{4} + 2\sqrt{x}

(c) f(x)=(2x21)(x41)f(x) = (2x^2 - 1)(x^4 - 1)

(d) f(x)=(x5+1x)(x5+1)f(x) = \left( x^5 + \frac{1}{x} \right) (x^5 + 1)

(e) f(x)=x1(x2+1)xf(x) = x^{-1}(x^2 + 1)\sqrt{x}

(f) f(x)=1x3f(x) = \frac{1}{\sqrt{x^3}}

(g) f(x)=x+1x1f(x) = \frac{x+1}{x-1}

(h) f(x)=3x1x2+x+1f(x) = \frac{3x - 1}{x^2 + x + 1}

(i) f(x)=x2x+1f(x) = \frac{\sqrt{x} - 2}{\sqrt{x} + 1}

(j) f(x)=x21x2+1f(x) = \frac{x^2 - 1}{x^{2} + 1}

(k) f(x)=ax+bcx+df(x) = \frac{ax + b}{cx + d}

(l) f(x)=xn(ax+b)f(x) = x^{n} (a\sqrt{x} + b)

Show answer

(a) f(x)=15x4+8x3f'(x) = 15x^{4} + 8x^{3}.

(b) f(x)=32x3+x1/2f'(x) = 32x^{3} + x^{-1/2}.

(c) f(x)=12x54x34x=4x(3x4x21)f'(x) = 12x^{5} - 4x^{3} - 4x = 4x(3x^{4} - x^{2} -1).

(d) f(x)=10x9+5x4+4x3x2f'(x) = 10x^9 + 5x^{4} + 4x^{3} - x^{-2}.

(e) f(x)=32x1/212x3/2f'(x) = \frac{3}{2}x^{1/2} - \frac{1}{2} x^{-3/2}.

(f) f(x)=32x5/2f'(x) = -\frac{3}{2} x^{-5/2}.

(g) f(x)=2(x1)2f'(x) = -\frac{2}{(x-1)^{2}}.

(h) f(x)=3x2+2x+4(x2+x+1)2f'(x) = \frac{-3x^2 + 2x + 4}{(x^2 + x + 1)^{2}}.

(i) f(x)=32x(x+1)2f'(x) = \frac{3}{2\sqrt{x}(\sqrt{x} + 1)^2}.

(j) f(x)=4x(x2+1)2f'(x) = \frac{4x}{(x^2 + 1)^{2}}.

(k) f(x)=adbc(cx+d)2 f'(x) = \frac{ad - bc}{(cx + d)^{2}}.

(l) f(x)=a(n+12)xn1/2+nbxn1f'(x) = a\left( n + \frac{1}{2} \right) x^{n-1/2} + nbx^{n-1}.

Question 13

For the following functions, determine the intervals on which it is increasing.

(a) y=14(x46x2)y = \frac{1}{4}(x^{4} - 6x^{2})

(b) y=2xx2+2y = \frac{2x}{x^{2} + 2}

Show answer

(a) [3,0]\left[ -\sqrt{3}, 0 \right] and [3,)\left[\sqrt{3}, \infty \right).

(b) [2,2]\left[ -\sqrt{2}, \sqrt{2} \right].

Question 14

Find the equations for the tangents to the graphs of the following functions at the specified points.

(a) y=3xx2y = 3 - x - x^2 at x=1x =1

(b) y=x21x2+1y = \frac{x^2 - 1}{x^2 + 1} at x=1x = 1

Show answer

(a) y=3+4y = -3+4.

(b) y=x1y = x-1.

Question 15

If f(x)=xf(x) = \sqrt{x}, then f(x)f(x)=xf(x) \cdot f(x) = x. Differentiate this equation using the product rule in order to find a formula for f(x)f'(x).

Show answer

The product rule yields f(x)f(x)+f(x)f(x)=1f'(x) \cdot f (x) + f(x) \cdot f'(x) = 1, so 2f(x)f(x)=12f'(x) \cdot f (x) = 1. Hence, f(x)=1/2f(x)=1/2xf '(x) = 1/2f (x) = 1/2\sqrt{x}.

Last updated