copy Copy chevron-down
calculator-simple Integrationdumbbell Exercises 2This page allows you to practice some exercises on Integration. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.
circle-exclamation
These questions correspond to the following sections:
- Section 10.3 - Properties of Definite Integrals
- Section 10.5 - Integration by Parts
Evaluate the following integrals.
(a) ∫ − 2 2 ( e x − e − x ) d x \int_{-2}^{2} (e^{x} - e^{-x}) \text{ d}x ∫ − 2 2 ( e x − e − x ) d x
(b) ∫ 2 10 1 x − 1 d x \int_{2}^{10} \frac{1}{x-1} \text{ d}x ∫ 2 10 x − 1 1 d x
(c) ∫ 0 1 2 x e x 2 d x \int_{0}^{1} 2xe^{x^{2}} \text{ d}x ∫ 0 1 2 x e x 2 d x
(d) ∫ 1 2 1 + x 3 x 2 d x \int_{1}^{2} \frac{1 + x^{3}}{x^{2}} \text{ d}x ∫ 1 2 x 2 1 + x 3 d x
chevron-right Show answerhashtag (a) ∣ − 2 2 ( e x + e − x ) = ( e 2 + e − 2 ) − ( e − 2 + e 2 ) = 0 \Big|_{-2}^{2} (e^{x} + e^{-x}) = (e^{2} + e^{-2}) - (e^{-2} + e^{2}) = 0 − 2 2 ( e x + e − x ) = ( e 2 + e − 2 ) − ( e − 2 + e 2 ) = 0 .
(b) ∣ 2 10 ln ( x − 1 ) = ln ( 9 ) − ln ( 1 ) = ln 9 \Big|_{2}^{10} \ln(x-1) = \ln(9) - \ln(1) = \ln 9 2 10 ln ( x − 1 ) = ln ( 9 ) − ln ( 1 ) = ln 9 .
(c) Let u = x 2 ⟹ d u d x = 2 x ⟹ d u = 2 x d x u = x^2 \implies \frac{\text{d}u}{\text{d}x} = 2x \implies \text{d}u = 2x \text{ d}x u = x 2 ⟹ d x d u = 2 x ⟹ d u = 2 x d x . This is very useful, because the integral can now be represented as
∫ 0 1 e u d u = ∣ 0 1 e u = e 1 − e 0 = e − 1 \int_{0}^{1} e^{u} \text{ d}u = \Big|_{0}^{1} e^{u} = e^{1} - e^{0} = e - 1 ∫ 0 1 e u d u = 0 1 e u = e 1 − e 0 = e − 1 ,
where the bounds have been adapted to u u u instead of x x x , but remained the same as
x = 0 ⟹ u = 0 ; x=0 \implies u=0; x = 0 ⟹ u = 0 ;
x = 1 ⟹ u = 1 x=1 \implies u = 1 x = 1 ⟹ u = 1 .
(d) ∫ 1 2 1 + x 3 x 2 d x = ∫ 1 2 ( 1 x 2 + x ) d x = ∣ 1 2 ( − 1 x + 1 2 x 2 ) = 2 \int_{1}^{2} \frac{1+x^3}{x^2} \text{ d}x = \int_{1}^{2} \left( \frac{1}{x^2} + x \right) \text{ d}x = \Big|_{1}^{2} \left( -\frac{1}{x} + \frac{1}{2}x^{2} \right) = 2 ∫ 1 2 x 2 1 + x 3 d x = ∫ 1 2 ( x 2 1 + x ) d x = 1 2 ( − x 1 + 2 1 x 2 ) = 2 .
Solve the following problems.
(a) If ∫ a b f ( x ) d x = 8 \int_{a}^{b} f(x) \text{ d}x = 8 ∫ a b f ( x ) d x = 8 and ∫ a c f ( x ) d x = 4 \int_{a}^{c} f(x) \text{ d}x = 4 ∫ a c f ( x ) d x = 4 , what is ∫ c b f ( x ) d x \int_{c}^{b} f(x) \text{ d}x ∫ c b f ( x ) d x ?
(b) If ∫ 0 1 ( f ( x ) − 2 g ( x ) ) d x = 6 \int_{0}^{1} (f(x) - 2g(x)) \text{ d}x = 6 ∫ 0 1 ( f ( x ) − 2 g ( x )) d x = 6 and ∫ 0 1 ( 2 f ( x ) + 2 g ( x ) ) d x = 9 \int_{0}^{1} (2f(x) + 2 g(x)) \text{ d}x = 9 ∫ 0 1 ( 2 f ( x ) + 2 g ( x )) d x = 9 , find I = ∫ 0 1 ( f ( x ) − g ( x ) ) d x I = \int_{0}^{1} (f(x) - g(x)) \text{ d}x I = ∫ 0 1 ( f ( x ) − g ( x )) d x .
(c) Find the function f ( x ) f(x) f ( x ) if f ′ ( x ) = a x 2 + b x f'(x) = ax^{2} + bx f ′ ( x ) = a x 2 + b x , f ′ ( 1 ) = 6 f'(1) = 6 f ′ ( 1 ) = 6 , f ′ ′ ( 1 ) = 18 f''(1) = 18 f ′′ ( 1 ) = 18 and ∫ 0 2 f ( x ) d x = 18 \int_{0}^{2} f(x) \text{ d}x = 18 ∫ 0 2 f ( x ) d x = 18 .
chevron-right Show answerhashtag (a) ∫ c b f ( x ) d x = ∫ a b f ( x ) d x − ∫ a c f ( x ) d x = 8 − 4 = 4 \int_{c}^{b} f(x) \text{ d}x = \int_{a}^{b} f(x) \text{ d}x - \int_{a}^{c} f(x) \text{ d}x = 8 - 4 = 4 ∫ c b f ( x ) d x = ∫ a b f ( x ) d x − ∫ a c f ( x ) d x = 8 − 4 = 4 .
(b) Let A = ∫ 0 1 f ( x ) d x A = \int_{0}^{1} f (x) \text{ d}x A = ∫ 0 1 f ( x ) d x and B = ∫ 0 1 g ( x ) d x B = \int_{0}^{1} g(x) \text{ d}x B = ∫ 0 1 g ( x ) d x . Then the two equations imply that A − 2 B = 6 A − 2B = 6 A − 2 B = 6 and 2 A + 2 B = 9 2A + 2B = 9 2 A + 2 B = 9 . Solving these gives A = 5 A = 5 A = 5 and B = − 1 / 2 B = −1/2 B = − 1/2 , so I = A − B = 11 / 2 I = A − B = 11/2 I = A − B = 11/2 .
(c) f ( x ) = 4 x 3 − 3 x 2 + 5 f(x) = 4x^3 - 3x^2 + 5 f ( x ) = 4 x 3 − 3 x 2 + 5 , because:
f ′ ( 1 ) = a + b = 6 f' (1) = a + b = 6 f ′ ( 1 ) = a + b = 6 .
f ′ ′ ( 1 ) = 2 a + b = 18 f''(1) = 2a + b = 18 f ′′ ( 1 ) = 2 a + b = 18 .
These are two equations with 2 unknowns that solves for a = 12 a=12 a = 12 and b = − 6 b=-6 b = − 6 .
Thus, 18 = ∫ 0 2 4 x 3 − 3 x 2 + C = ∣ 0 2 ( x 4 − x 3 + C x ) = 2 4 − 2 3 + 2 C 18 = \int_{0}^{2} 4x^3 - 3x^2 + C = \Big|_{0}^{2} (x^4 - x^3 + Cx) = 2^4 - 2^3 + 2C 18 = ∫ 0 2 4 x 3 − 3 x 2 + C = 0 2 ( x 4 − x 3 + C x ) = 2 4 − 2 3 + 2 C , which solves for C = 5 C = 5 C = 5 .
Evaluate the following integrals.
(a) ∫ 0 3 ( 1 3 e 3 x − 2 + ( x + 2 ) − 1 ) d x \int_{0}^{3} \left( \frac{1}{3}e^{3x - 2} + (x+2)^{-1} \right) \text{ d}x ∫ 0 3 ( 3 1 e 3 x − 2 + ( x + 2 ) − 1 ) d x
(b) ∫ 0 1 x 2 + x + x + 1 x + 1 d x \int_{0}^{1} \frac{x^2 + x + \sqrt{x+1}}{x+1} \text{ d}x ∫ 0 1 x + 1 x 2 + x + x + 1 d x
(c) ∫ 1 b ( A x + b x + c + d x ) d x \int_{1}^{b} \left( A \frac{x + b}{x + c} + \frac{d}{x} \right) \text{ d}x ∫ 1 b ( A x + c x + b + x d ) d x for A , b , c , d A, b, c, d A , b , c , d positive constants
chevron-right Show answerhashtag (a) Using the integration rules and ln ( a ) − ln ( b ) = ln ( a / b ) \ln(a) - \ln(b) = \ln(a/b) ln ( a ) − ln ( b ) = ln ( a / b ) , we obtain:∣ 0 3 [ 1 9 e 3 x − 2 + ln ( x + 2 ) ] = [ 1 9 e 7 + ln ( 5 ) ] − [ 1 9 e − 2 + ln ( 2 ) ] = 1 9 ( e 7 − e − 2 ) + ln ( 5 / 2 ) \Big|_{0}^{3} \left[ \frac{1}{9} e^{3x-2} + \ln(x+2) \right] = \left[\frac{1}{9}e^{7} + \ln(5)\right] - \left[ \frac{1}{9}e^{-2} + \ln(2) \right] = \frac{1}{9}(e^7 - e^{-2}) + \ln(5/2) 0 3 [ 9 1 e 3 x − 2 + ln ( x + 2 ) ] = [ 9 1 e 7 + ln ( 5 ) ] − [ 9 1 e − 2 + ln ( 2 ) ] = 9 1 ( e 7 − e − 2 ) + ln ( 5/2 ) .
(b) We can rewrite x 2 + x + x + 1 x + 1 \frac{x^2 + x + \sqrt{x+1}}{x+1} x + 1 x 2 + x + x + 1 as x + ( x + 1 ) − 1 / 2 x + (x+1)^{-1/2} x + ( x + 1 ) − 1/2 . Note that
The first integral is straightforward: ∫ 0 1 x d x = ∣ 0 1 x 2 2 = 1 2 \int_{0}^{1} x \text{ d}x = \Big|_{0}^{1} \frac{x^2}{2} = \frac{1}{2} ∫ 0 1 x d x = 0 1 2 x 2 = 2 1 .
For the second integral, define u = x + 1 u = x+1 u = x + 1 . This gives d u d x = 1 \frac{\text{d}u}{\text{d}x} = 1 d x d u = 1 , thus d u = d x \text{d}u = \text{d}x d u = d x . When x = 0 , u = 1 x=0, u=1 x = 0 , u = 1 and when x = 1 , u = 2 x=1, u=2 x = 1 , u = 2 . We now obtain ∫ 0 1 ( x + 1 ) − 1 / 2 d x = ∫ 1 2 u − 1 / 2 d u = ∣ 1 2 2 u = 2 ( 2 − 1 ) \int_{0}^{1} (x+1)^{-1/2} \text{ d}x = \int_{1}^{2} u^{-1/2} \text{ d}u = \Big|_{1}^{2} 2\sqrt{u} = 2(\sqrt{2} - 1) ∫ 0 1 ( x + 1 ) − 1/2 d x = ∫ 1 2 u − 1/2 d u = 1 2 2 u = 2 ( 2 − 1 ) .
Thus, the final result is 1 2 + 2 ( 2 − 1 ) = 2 2 − 3 2 \frac{1}{2} + 2(\sqrt{2} - 1) = 2\sqrt{2} - \frac{3}{2} 2 1 + 2 ( 2 − 1 ) = 2 2 − 2 3 .
(c) The final result is: A ( b − 1 ) + A ( b − c ) ln [ ( b + c ) / ( 1 + c ) ] + d ln b A(b-1) + A(b-c)\ln[(b+c)/(1+c)] + d\ln b A ( b − 1 ) + A ( b − c ) ln [( b + c ) / ( 1 + c )] + d ln b . You can get there by recognizing:
∫ 1 b ( A x + b x + c + d x ) d x = A ∫ 1 b x + b x + c d x + d ∫ 1 b 1 x d x \int_{1}^{b} \left( A \frac{x + b}{x + c} + \frac{d}{x} \right) \text{ d}x = A\int_{1}^{b} \frac{x+b}{x+c} \text{ d}x + d \int_{1}^{b} \frac{1}{x} \text{ d}x ∫ 1 b ( A x + c x + b + x d ) d x = A ∫ 1 b x + c x + b d x + d ∫ 1 b x 1 d x (split the integral).
Note that x + b x + c = ( x + c ) + ( b − c ) x + c = 1 + b − c x + c \frac{x+b}{x+c} = \frac{(x+c) + (b-c)}{x+c} = 1 + \frac{b-c}{x+c} x + c x + b = x + c ( x + c ) + ( b − c ) = 1 + x + c b − c (rewrite the fraction).
Now, we can evaluate the following integrals:
∫ 1 b 1 x d x = ln b \int_{1}^{b} \frac{1}{x} \text{ d}x = \ln b ∫ 1 b x 1 d x = ln b , as ln 1 = 0 \ln 1 = 0 ln 1 = 0 .
∫ 1 b 1 = b − 1 \int_{1}^{b} 1 = b-1 ∫ 1 b 1 = b − 1 .
∫ 1 b 1 x + c = ∣ 1 b ln ( x + c ) = ln ( b + c ) − ln ( 1 + c ) = ln [ ( b + c ) / ( c + 1 ) ] \int_{1}^{b} \frac{1}{x+c} = \Big|_{1}^{b} \ln(x+c) = \ln(b + c) - \ln(1 +c) = \ln[(b+c)/(c+1)] ∫ 1 b x + c 1 = 1 b ln ( x + c ) = ln ( b + c ) − ln ( 1 + c ) = ln [( b + c ) / ( c + 1 )] .
Adding all the parts together (including the constants), yields the desired result.
Let F ( x ) = ∫ 0 x ( t 2 + 2 ) d t F(x) = \int_{0}^{x} (t^2 + 2) \text{ d}t F ( x ) = ∫ 0 x ( t 2 + 2 ) d t and G ( x ) = ∫ 0 x 2 ( t 2 + 2 ) d t . G(x) = \int_{0}^{x^{2}} (t^2 + 2) \text{ d}t. G ( x ) = ∫ 0 x 2 ( t 2 + 2 ) d t . Find F ′ ( x ) F'(x) F ′ ( x ) and G ′ ( x ) G'(x) G ′ ( x ) .
chevron-right Show answerhashtag Since the derivative of the definite integral with respect to the upper limit of integration is equal to the integrand evaluated at that limit, i.e.,
d d t ∫ a t f ( x ) d x = F ′ ( t ) = f ( t ) \frac{\text{d}}{\text{d}t} \int_{a}^{t} f(x) \text{d} x = F'(t) = f(t) d t d ∫ a t f ( x ) d x = F ′ ( t ) = f ( t ) ,
we know that F ′ ( x ) = x 2 + 2 F'(x) = x^2 + 2 F ′ ( x ) = x 2 + 2 . Combined with the chain rule, it implies that G ′ ( x ) = G ′ ( x 2 ) × d x 2 d x = [ ( x 2 ) 2 + 2 ] × 2 x = 2 x 5 + 4 x G'(x) = G' (x^2) \times \frac{\text{d}x^2}{\text{d}x} = [(x^2)^2 + 2] \times 2x = 2x^5 + 4x G ′ ( x ) = G ′ ( x 2 ) × d x d x 2 = [( x 2 ) 2 + 2 ] × 2 x = 2 x 5 + 4 x .
Find the following expressions.
(a) d d t ∫ t 3 e − x 2 d x \frac{\text{d}}{\text{d}t} \int_{t}^{3} e^{-x^{2}} \text{ d}x d t d ∫ t 3 e − x 2 d x
(b) d d t ∫ − t t 1 x 4 + 1 d x \frac{\text{d}}{\text{d} t} \int_{-t}^{t} \frac{1}{\sqrt{x^{4} + 1}} \text{ d}x d t d ∫ − t t x 4 + 1 1 d x
chevron-right Show answerhashtag (a) − e − t 2 -e^{-t^2} − e − t 2
(b) 2 / t 4 + 1 2/\sqrt{t^4 +1} 2/ t 4 + 1
By using the following rule, these results are immediate. If a ( t ) a(t) a ( t ) and b ( t ) b(t) b ( t ) are differentiable and f ( x ) f(x) f ( x ) is continuous,
d d t ∫ a ( t ) b ( t ) f ( x ) d x = f ( b ( t ) ) b ′ ( t ) − f ( a ( t ) ) a ′ ( t ) \frac{\text{d}}{\text{d}t} \int_{a(t)}^{b(t)} f(x) \text{d}x = f(b(t))b'(t) - f(a(t))a'(t) d t d ∫ a ( t ) b ( t ) f ( x ) d x = f ( b ( t )) b ′ ( t ) − f ( a ( t )) a ′ ( t ) .
Use integration by parts to evaluate the following:
(a) ∫ x e − x d x \int x e^{-x} \text{ d}x ∫ x e − x d x
(b) ∫ 3 x e 4 x d x \int 3x e^{4x} \text{ d}x ∫ 3 x e 4 x d x
(c) ∫ ( 1 + x 2 ) e − x d x \int (1+x^2)e^{-x} \text{ d}x ∫ ( 1 + x 2 ) e − x d x
(d) ∫ x ln x d x \int x \ln x \text{ d}x ∫ x ln x d x
(e) ∫ − 1 1 x ln ( x + 2 ) d x \int_{-1}^{1} x \ln (x+2) \text{ d}x ∫ − 1 1 x ln ( x + 2 ) d x
(f) ∫ 0 2 x 2 x d x \int_{0}^{2} x 2^{x} \text{ d}x ∫ 0 2 x 2 x d x
(g) ∫ 0 1 x 2 e x d x \int_{0}^{1} x^{2}e^{x} \text{ d}x ∫ 0 1 x 2 e x d x
(h) ∫ 0 3 x 1 + x d x \int_{0}^{3} x\sqrt{1 + x} \text{ d}x ∫ 0 3 x 1 + x d x
chevron-right Show answerhashtag Integration by Parts can be applied using the following formula:
∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x \int f(x) g'(x) \text{ d}x = f(x)g(x) - \int f' (x)g(x) \text{ d}x ∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x .
(a) Choose f ( x ) = x f(x) = x f ( x ) = x and g ′ ( x ) = e − x g' (x) = e^{-x} g ′ ( x ) = e − x . Then we obtain
∫ x e − x d x = x ( − e − x ) − ∫ 1 ⋅ ( − e − x ) d x = − x e − x − e − x + C \int xe^{−x} \text{ d}x = x(−e^{−x}) − \int 1 \cdot (−e^{−x}) \text{ d}x = −xe^{−x} − e^{−x} + C ∫ x e − x d x = x ( − e − x ) − ∫ 1 ⋅ ( − e − x ) d x = − x e − x − e − x + C .
(b) 3 4 x e 4 x − 3 16 e 4 x + C \frac{3}{4}xe^{4x} - \frac{3}{16}e^{4x} + C 4 3 x e 4 x − 16 3 e 4 x + C .
(c) − x 2 e − x − 2 x e − x − 3 e − x + C -x^2 e^{-x} - 2x e^{-x} - 3e^{-x} + C − x 2 e − x − 2 x e − x − 3 e − x + C .
(d) 1 2 x 2 ln x − 1 4 x 2 + C \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C 2 1 x 2 ln x − 4 1 x 2 + C .
(e) ∫ − 1 1 x ln ( x + 2 ) d x = ∣ − 1 1 1 2 x 2 ln ( x + 2 ) − ∫ − 1 1 1 2 x 2 1 x + 2 d x \int_{-1}^{1} x \ln (x+2) \text{ d}x = \Big|_{-1}^{1} \frac{1}{2}x^2 \ln(x+2) - \int_{-1}^{1} \frac{1}{2}x^2 \frac{1}{x+2} \text{ d}x ∫ − 1 1 x ln ( x + 2 ) d x = − 1 1 2 1 x 2 ln ( x + 2 ) − ∫ − 1 1 2 1 x 2 x + 2 1 d x
= 1 2 ln 3 − 1 2 ∫ − 1 1 ( x − 2 + 4 x + 2 ) d x = 2 − 3 2 ln 3 = \frac{1}{2} \ln 3 - \frac{1}{2}\int_{-1}^{1} (x-2 + \frac{4}{x+2}) \text{ d}x = 2 - \frac{3}{2}\ln 3 = 2 1 ln 3 − 2 1 ∫ − 1 1 ( x − 2 + x + 2 4 ) d x = 2 − 2 3 ln 3 .
(f) 8 / ( ln 2 ) − 3 / ( ln 2 ) 2 8/(\ln 2) - 3/(\ln 2)^2 8/ ( ln 2 ) − 3/ ( ln 2 ) 2 .
(g) e − 2 e - 2 e − 2 .
(h) 7 11 15 = 116 15 7\frac{11}{15} = \frac{116}{15} 7 15 11 = 15 116 .
Note that we can always write f ( x ) = 1 ⋅ f ( x ) f(x) = 1 \cdot f(x) f ( x ) = 1 ⋅ f ( x ) for any function f ( x ) f(x) f ( x ) . Use this fact and integration by parts to prove that ∫ f ( x ) d x = x f ( x ) − ∫ x f ′ ( x ) d x \int f(x) \text{ d}x = xf(x) - \int x f'(x) \text{ d}x ∫ f ( x ) d x = x f ( x ) − ∫ x f ′ ( x ) d x . Apply this formula to f ( x ) = ln x f(x) = \ln x f ( x ) = ln x .
chevron-right Show answerhashtag This result follows directly by defining f ( x ) = f ( x ) ⋅ g ′ ( x ) f (x) = f(x) \cdot g'(x) f ( x ) = f ( x ) ⋅ g ′ ( x ) , where g ′ ( x ) = 1 g'(x) = 1 g ′ ( x ) = 1 . Filling in the formula ∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x \int f(x) g'(x) \text{ d}x = f(x)g(x) - \int f' (x)g(x) \text{ d}x ∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x then yields the desired result ∫ f ( x ) d x = x ⋅ f ( x ) − ∫ x f ′ ( x ) d x \int f(x) \text{ d}x = x \cdot f(x) - \int x f'(x) \text{ d}x ∫ f ( x ) d x = x ⋅ f ( x ) − ∫ x f ′ ( x ) d x .
For f ( x ) = ln x f(x) = \ln x f ( x ) = ln x , we now obtain ∫ ln x d x = x ln x − ∫ x 1 x d x = x ln x − x + C \int \ln x \text{ d}x = x\ln x - \int x \frac{1}{x} \text{ d}x = x \ln x - x + C ∫ ln x d x = x ln x − ∫ x x 1 d x = x ln x − x + C .
Evaluate the following integrals for r ≠ 0 r \neq 0 r = 0 :
(a) ∫ 0 T b t e − r t d t \int_{0}^{T} bt e^{-rt} \text{ d}t ∫ 0 T b t e − r t d t
(b) ∫ 0 T ( a + b t ) e − r t d t \int_{0}^{T} (a + bt)e^{-rt} \text{ d}t ∫ 0 T ( a + b t ) e − r t d t
(c) ∫ 0 T ( a − b t + c t 2 ) e − r t d t \int_{0}^{T} (a - bt + ct^{2})e^{-rt} \text{ d}t ∫ 0 T ( a − b t + c t 2 ) e − r t d t
chevron-right Show answerhashtag (a) b r − 2 [ 1 − ( 1 + r T ) e − r T ] br^ {−2} \left[1 − (1 + rT )e^{−rT} \right] b r − 2 [ 1 − ( 1 + r T ) e − r T ] .
(b) a r − 1 ( 1 − e − r T ) + b r − 2 [ 1 − ( 1 + r T ) e − r T ] ar^{−1} (1 − e^{−rT}) + br^{−2}\left[1 − (1 + rT )e^{−rT}\right] a r − 1 ( 1 − e − r T ) + b r − 2 [ 1 − ( 1 + r T ) e − r T ] .
(c) a r − 1 ( 1 − e − r T ) − b r − 2 [ 1 − ( 1 + r T ) e − r T ] ar^{−1}(1 − e^{−rT}) − br^{−2}\left[1 − (1 + rT )e^{−rT}\right] a r − 1 ( 1 − e − r T ) − b r − 2 [ 1 − ( 1 + r T ) e − r T ]
+ c r − 3 [ 2 ( 1 − e − r T ) − 2 r T e − r T − r 2 T 2 e − r T ] \ \ \ + \ c r^{−3}\left[2 (1 − e^{−rT}) − 2rTe^{−rT} − r^2 T^2 e^{−rT}\right] + c r − 3 [ 2 ( 1 − e − r T ) − 2 r T e − r T − r 2 T 2 e − r T ] .
Last updated 7 months ago