dumbbellExercises 2

This page allows you to practice some exercises on Integration. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

circle-exclamation

Question 10

Evaluate the following integrals.

(a) 22(exex) dx\int_{-2}^{2} (e^{x} - e^{-x}) \text{ d}x

(b) 2101x1 dx\int_{2}^{10} \frac{1}{x-1} \text{ d}x

(c) 012xex2 dx \int_{0}^{1} 2xe^{x^{2}} \text{ d}x

(d) 121+x3x2 dx\int_{1}^{2} \frac{1 + x^{3}}{x^{2}} \text{ d}x

chevron-rightShow answerhashtag

(a) 22(ex+ex)=(e2+e2)(e2+e2)=0\Big|_{-2}^{2} (e^{x} + e^{-x}) = (e^{2} + e^{-2}) - (e^{-2} + e^{2}) = 0.

(b) 210ln(x1)=ln(9)ln(1)=ln9\Big|_{2}^{10} \ln(x-1) = \ln(9) - \ln(1) = \ln 9.

(c) Let u=x2    dudx=2x    du=2x dxu = x^2 \implies \frac{\text{d}u}{\text{d}x} = 2x \implies \text{d}u = 2x \text{ d}x. This is very useful, because the integral can now be represented as

01eu du=01eu=e1e0=e1\int_{0}^{1} e^{u} \text{ d}u = \Big|_{0}^{1} e^{u} = e^{1} - e^{0} = e - 1,

where the bounds have been adapted to uu instead of xx, but remained the same as

  • x=0    u=0;x=0 \implies u=0;

  • x=1    u=1x=1 \implies u = 1.

(d) 121+x3x2 dx=12(1x2+x) dx=12(1x+12x2)=2\int_{1}^{2} \frac{1+x^3}{x^2} \text{ d}x = \int_{1}^{2} \left( \frac{1}{x^2} + x \right) \text{ d}x = \Big|_{1}^{2} \left( -\frac{1}{x} + \frac{1}{2}x^{2} \right) = 2.

Question 11

Solve the following problems.

(a) If abf(x) dx=8\int_{a}^{b} f(x) \text{ d}x = 8 and acf(x) dx=4\int_{a}^{c} f(x) \text{ d}x = 4, what is cbf(x) dx\int_{c}^{b} f(x) \text{ d}x?

(b) If 01(f(x)2g(x)) dx=6\int_{0}^{1} (f(x) - 2g(x)) \text{ d}x = 6 and 01(2f(x)+2g(x)) dx=9\int_{0}^{1} (2f(x) + 2 g(x)) \text{ d}x = 9, find I=01(f(x)g(x)) dxI = \int_{0}^{1} (f(x) - g(x)) \text{ d}x.

(c) Find the function f(x)f(x) if f(x)=ax2+bxf'(x) = ax^{2} + bx, f(1)=6f'(1) = 6, f(1)=18f''(1) = 18 and 02f(x) dx=18\int_{0}^{2} f(x) \text{ d}x = 18.

chevron-rightShow answerhashtag

(a) cbf(x) dx=abf(x) dxacf(x) dx=84=4\int_{c}^{b} f(x) \text{ d}x = \int_{a}^{b} f(x) \text{ d}x - \int_{a}^{c} f(x) \text{ d}x = 8 - 4 = 4.

(b) Let A=01f(x) dxA = \int_{0}^{1} f (x) \text{ d}x and B=01g(x) dxB = \int_{0}^{1} g(x) \text{ d}x. Then the two equations imply that A2B=6A − 2B = 6 and 2A+2B=92A + 2B = 9. Solving these gives A=5A = 5 and B=1/2B = −1/2, so I=AB=11/2I = A − B = 11/2.

(c) f(x)=4x33x2+5f(x) = 4x^3 - 3x^2 + 5, because:

  • f(1)=a+b=6f' (1) = a + b = 6.

  • f(1)=2a+b=18f''(1) = 2a + b = 18.

  • These are two equations with 2 unknowns that solves for a=12a=12 and b=6b=-6.

  • Thus, 18=024x33x2+C=02(x4x3+Cx)=2423+2C18 = \int_{0}^{2} 4x^3 - 3x^2 + C = \Big|_{0}^{2} (x^4 - x^3 + Cx) = 2^4 - 2^3 + 2C, which solves for C=5C = 5.

Question 12

Evaluate the following integrals.

(a) 03(13e3x2+(x+2)1) dx\int_{0}^{3} \left( \frac{1}{3}e^{3x - 2} + (x+2)^{-1} \right) \text{ d}x

(b) 01x2+x+x+1x+1 dx\int_{0}^{1} \frac{x^2 + x + \sqrt{x+1}}{x+1} \text{ d}x

(c) 1b(Ax+bx+c+dx) dx\int_{1}^{b} \left( A \frac{x + b}{x + c} + \frac{d}{x} \right) \text{ d}x for A,b,c,dA, b, c, d positive constants

chevron-rightShow answerhashtag

(a) Using the integration rules and ln(a)ln(b)=ln(a/b)\ln(a) - \ln(b) = \ln(a/b), we obtain:03[19e3x2+ln(x+2)]=[19e7+ln(5)][19e2+ln(2)]=19(e7e2)+ln(5/2)\Big|_{0}^{3} \left[ \frac{1}{9} e^{3x-2} + \ln(x+2) \right] = \left[\frac{1}{9}e^{7} + \ln(5)\right] - \left[ \frac{1}{9}e^{-2} + \ln(2) \right] = \frac{1}{9}(e^7 - e^{-2}) + \ln(5/2).

(b) We can rewrite x2+x+x+1x+1\frac{x^2 + x + \sqrt{x+1}}{x+1} as x+(x+1)1/2x + (x+1)^{-1/2}. Note that

  • The first integral is straightforward: 01x dx=01x22=12\int_{0}^{1} x \text{ d}x = \Big|_{0}^{1} \frac{x^2}{2} = \frac{1}{2}.

  • For the second integral, define u=x+1u = x+1. This gives dudx=1\frac{\text{d}u}{\text{d}x} = 1, thus du=dx\text{d}u = \text{d}x. When x=0,u=1x=0, u=1 and when x=1,u=2x=1, u=2. We now obtain 01(x+1)1/2 dx=12u1/2 du=122u=2(21)\int_{0}^{1} (x+1)^{-1/2} \text{ d}x = \int_{1}^{2} u^{-1/2} \text{ d}u = \Big|_{1}^{2} 2\sqrt{u} = 2(\sqrt{2} - 1).

Thus, the final result is 12+2(21)=2232\frac{1}{2} + 2(\sqrt{2} - 1) = 2\sqrt{2} - \frac{3}{2}.

(c) The final result is: A(b1)+A(bc)ln[(b+c)/(1+c)]+dlnbA(b-1) + A(b-c)\ln[(b+c)/(1+c)] + d\ln b. You can get there by recognizing:

  • 1b(Ax+bx+c+dx) dx=A1bx+bx+c dx+d1b1x dx\int_{1}^{b} \left( A \frac{x + b}{x + c} + \frac{d}{x} \right) \text{ d}x = A\int_{1}^{b} \frac{x+b}{x+c} \text{ d}x + d \int_{1}^{b} \frac{1}{x} \text{ d}x (split the integral).

  • Note that x+bx+c=(x+c)+(bc)x+c=1+bcx+c\frac{x+b}{x+c} = \frac{(x+c) + (b-c)}{x+c} = 1 + \frac{b-c}{x+c} (rewrite the fraction).

Now, we can evaluate the following integrals:

  • 1b1x dx=lnb\int_{1}^{b} \frac{1}{x} \text{ d}x = \ln b, as ln1=0\ln 1 = 0.

  • 1b1=b1\int_{1}^{b} 1 = b-1.

  • 1b1x+c=1bln(x+c)=ln(b+c)ln(1+c)=ln[(b+c)/(c+1)]\int_{1}^{b} \frac{1}{x+c} = \Big|_{1}^{b} \ln(x+c) = \ln(b + c) - \ln(1 +c) = \ln[(b+c)/(c+1)].

Adding all the parts together (including the constants), yields the desired result.

Question 13

Let F(x)=0x(t2+2) dtF(x) = \int_{0}^{x} (t^2 + 2) \text{ d}t and G(x)=0x2(t2+2) dt.G(x) = \int_{0}^{x^{2}} (t^2 + 2) \text{ d}t. Find F(x)F'(x) and G(x)G'(x).

chevron-rightShow answerhashtag

Since the derivative of the definite integral with respect to the upper limit of integration is equal to the integrand evaluated at that limit, i.e.,

ddtatf(x)dx=F(t)=f(t)\frac{\text{d}}{\text{d}t} \int_{a}^{t} f(x) \text{d} x = F'(t) = f(t),

we know that F(x)=x2+2F'(x) = x^2 + 2. Combined with the chain rule, it implies that G(x)=G(x2)×dx2dx=[(x2)2+2]×2x=2x5+4xG'(x) = G' (x^2) \times \frac{\text{d}x^2}{\text{d}x} = [(x^2)^2 + 2] \times 2x = 2x^5 + 4x.

Question 14

Find the following expressions.

(a) ddtt3ex2 dx\frac{\text{d}}{\text{d}t} \int_{t}^{3} e^{-x^{2}} \text{ d}x

(b) ddttt1x4+1 dx\frac{\text{d}}{\text{d} t} \int_{-t}^{t} \frac{1}{\sqrt{x^{4} + 1}} \text{ d}x

chevron-rightShow answerhashtag

(a) et2-e^{-t^2}

(b) 2/t4+12/\sqrt{t^4 +1}

By using the following rule, these results are immediate. If a(t)a(t) and b(t)b(t) are differentiable and f(x)f(x) is continuous,

ddta(t)b(t)f(x)dx=f(b(t))b(t)f(a(t))a(t)\frac{\text{d}}{\text{d}t} \int_{a(t)}^{b(t)} f(x) \text{d}x = f(b(t))b'(t) - f(a(t))a'(t).

Question 15

Use integration by parts to evaluate the following:

(a) xex dx\int x e^{-x} \text{ d}x

(b) 3xe4x dx\int 3x e^{4x} \text{ d}x

(c) (1+x2)ex dx\int (1+x^2)e^{-x} \text{ d}x

(d) xlnx dx\int x \ln x \text{ d}x

(e) 11xln(x+2) dx\int_{-1}^{1} x \ln (x+2) \text{ d}x

(f) 02x2x dx\int_{0}^{2} x 2^{x} \text{ d}x

(g) 01x2ex dx\int_{0}^{1} x^{2}e^{x} \text{ d}x

(h) 03x1+x dx\int_{0}^{3} x\sqrt{1 + x} \text{ d}x

chevron-rightShow answerhashtag

Integration by Parts can be applied using the following formula:

f(x)g(x) dx=f(x)g(x)f(x)g(x) dx\int f(x) g'(x) \text{ d}x = f(x)g(x) - \int f' (x)g(x) \text{ d}x.


(a) Choose f(x)=xf(x) = x and g(x)=exg' (x) = e^{-x}. Then we obtain

xex dx=x(ex)1(ex) dx=xexex+C\int xe^{−x} \text{ d}x = x(−e^{−x}) − \int 1 \cdot (−e^{−x}) \text{ d}x = −xe^{−x} − e^{−x} + C.

(b) 34xe4x316e4x+C\frac{3}{4}xe^{4x} - \frac{3}{16}e^{4x} + C.

(c) x2ex2xex3ex+C-x^2 e^{-x} - 2x e^{-x} - 3e^{-x} + C.

(d) 12x2lnx14x2+C\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C.

(e) 11xln(x+2) dx=1112x2ln(x+2)1112x21x+2 dx\int_{-1}^{1} x \ln (x+2) \text{ d}x = \Big|_{-1}^{1} \frac{1}{2}x^2 \ln(x+2) - \int_{-1}^{1} \frac{1}{2}x^2 \frac{1}{x+2} \text{ d}x

=12ln31211(x2+4x+2) dx=232ln3= \frac{1}{2} \ln 3 - \frac{1}{2}\int_{-1}^{1} (x-2 + \frac{4}{x+2}) \text{ d}x = 2 - \frac{3}{2}\ln 3.

(f) 8/(ln2)3/(ln2)28/(\ln 2) - 3/(\ln 2)^2.

(g) e2e - 2.

(h) 71115=116157\frac{11}{15} = \frac{116}{15}.

Question 16

Note that we can always write f(x)=1f(x)f(x) = 1 \cdot f(x) for any function f(x)f(x). Use this fact and integration by parts to prove that f(x) dx=xf(x)xf(x) dx\int f(x) \text{ d}x = xf(x) - \int x f'(x) \text{ d}x. Apply this formula to f(x)=lnxf(x) = \ln x.

chevron-rightShow answerhashtag

This result follows directly by defining f(x)=f(x)g(x)f (x) = f(x) \cdot g'(x), where g(x)=1g'(x) = 1. Filling in the formula f(x)g(x) dx=f(x)g(x)f(x)g(x) dx\int f(x) g'(x) \text{ d}x = f(x)g(x) - \int f' (x)g(x) \text{ d}x then yields the desired result f(x) dx=xf(x)xf(x) dx\int f(x) \text{ d}x = x \cdot f(x) - \int x f'(x) \text{ d}x.

For f(x)=lnxf(x) = \ln x, we now obtain lnx dx=xlnxx1x dx=xlnxx+C\int \ln x \text{ d}x = x\ln x - \int x \frac{1}{x} \text{ d}x = x \ln x - x + C.

Question 17

Evaluate the following integrals for r0r \neq 0:

(a) 0Tbtert dt\int_{0}^{T} bt e^{-rt} \text{ d}t

(b) 0T(a+bt)ert dt\int_{0}^{T} (a + bt)e^{-rt} \text{ d}t

(c) 0T(abt+ct2)ert dt\int_{0}^{T} (a - bt + ct^{2})e^{-rt} \text{ d}t

chevron-rightShow answerhashtag

(a) br2[1(1+rT)erT]br^ {−2} \left[1 − (1 + rT )e^{−rT} \right].

(b) ar1(1erT)+br2[1(1+rT)erT]ar^{−1} (1 − e^{−rT}) + br^{−2}\left[1 − (1 + rT )e^{−rT}\right].

(c) ar1(1erT)br2[1(1+rT)erT]ar^{−1}(1 − e^{−rT}) − br^{−2}\left[1 − (1 + rT )e^{−rT}\right]    + cr3[2(1erT)2rTerTr2T2erT]\ \ \ + \ c r^{−3}\left[2 (1 − e^{−rT}) − 2rTe^{−rT} − r^2 T^2 e^{−rT}\right].

Last updated