Integration Exercises 2This page allows you to practice some exercises on Integration. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.
These questions correspond to the following sections:
- Section 10.3 - Properties of Definite Integrals
- Section 10.5 - Integration by Parts
Question 10
Evaluate the following integrals.
(a) ∫ − 2 2 ( e x − e − x ) d x \int_{-2}^{2} (e^{x} - e^{-x}) \text{ d}x ∫ − 2 2 ( e x − e − x ) d x
(b) ∫ 2 10 1 x − 1 d x \int_{2}^{10} \frac{1}{x-1} \text{ d}x ∫ 2 10 x − 1 1 d x
(c) ∫ 0 1 2 x e x 2 d x \int_{0}^{1} 2xe^{x^{2}} \text{ d}x ∫ 0 1 2 x e x 2 d x
(d) ∫ 1 2 1 + x 3 x 2 d x \int_{1}^{2} \frac{1 + x^{3}}{x^{2}} \text{ d}x ∫ 1 2 x 2 1 + x 3 d x
Show answer(a) ∣ − 2 2 ( e x + e − x ) = ( e 2 + e − 2 ) − ( e − 2 + e 2 ) = 0 \Big|_{-2}^{2} (e^{x} + e^{-x}) = (e^{2} + e^{-2}) - (e^{-2} + e^{2}) = 0 − 2 2 ( e x + e − x ) = ( e 2 + e − 2 ) − ( e − 2 + e 2 ) = 0 .
(b) ∣ 2 10 ln ( x − 1 ) = ln ( 9 ) − ln ( 1 ) = ln 9 \Big|_{2}^{10} \ln(x-1) = \ln(9) - \ln(1) = \ln 9 2 10 ln ( x − 1 ) = ln ( 9 ) − ln ( 1 ) = ln 9 .
(c) Let u = x 2 ⟹ d u d x = 2 x ⟹ d u = 2 x d x u = x^2 \implies \frac{\text{d}u}{\text{d}x} = 2x \implies \text{d}u = 2x \text{ d}x u = x 2 ⟹ d x d u = 2 x ⟹ d u = 2 x d x . This is very useful, because the integral can now be represented as
∫ 0 1 e u d u = ∣ 0 1 e u = e 1 − e 0 = e − 1 \int_{0}^{1} e^{u} \text{ d}u = \Big|_{0}^{1} e^{u} = e^{1} - e^{0} = e - 1 ∫ 0 1 e u d u = 0 1 e u = e 1 − e 0 = e − 1 ,
where the bounds have been adapted to u u u instead of x x x , but remained the same as
x = 0 ⟹ u = 0 ; x=0 \implies u=0; x = 0 ⟹ u = 0 ;
x = 1 ⟹ u = 1 x=1 \implies u = 1 x = 1 ⟹ u = 1 .
(d) ∫ 1 2 1 + x 3 x 2 d x = ∫ 1 2 ( 1 x 2 + x ) d x = ∣ 1 2 ( − 1 x + 1 2 x 2 ) = 2 \int_{1}^{2} \frac{1+x^3}{x^2} \text{ d}x = \int_{1}^{2} \left( \frac{1}{x^2} + x \right) \text{ d}x = \Big|_{1}^{2} \left( -\frac{1}{x} + \frac{1}{2}x^{2} \right) = 2 ∫ 1 2 x 2 1 + x 3 d x = ∫ 1 2 ( x 2 1 + x ) d x = 1 2 ( − x 1 + 2 1 x 2 ) = 2 .
Question 11
Solve the following problems.
(a) If ∫ a b f ( x ) d x = 8 \int_{a}^{b} f(x) \text{ d}x = 8 ∫ a b f ( x ) d x = 8 and ∫ a c f ( x ) d x = 4 \int_{a}^{c} f(x) \text{ d}x = 4 ∫ a c f ( x ) d x = 4 , what is ∫ c b f ( x ) d x \int_{c}^{b} f(x) \text{ d}x ∫ c b f ( x ) d x ?
(b) If ∫ 0 1 ( f ( x ) − 2 g ( x ) ) d x = 6 \int_{0}^{1} (f(x) - 2g(x)) \text{ d}x = 6 ∫ 0 1 ( f ( x ) − 2 g ( x )) d x = 6 and ∫ 0 1 ( 2 f ( x ) + 2 g ( x ) ) d x = 9 \int_{0}^{1} (2f(x) + 2 g(x)) \text{ d}x = 9 ∫ 0 1 ( 2 f ( x ) + 2 g ( x )) d x = 9 , find I = ∫ 0 1 ( f ( x ) − g ( x ) ) d x I = \int_{0}^{1} (f(x) - g(x)) \text{ d}x I = ∫ 0 1 ( f ( x ) − g ( x )) d x .
(c) Find the function f ( x ) f(x) f ( x ) if f ′ ( x ) = a x 2 + b x f'(x) = ax^{2} + bx f ′ ( x ) = a x 2 + b x , f ′ ( 1 ) = 6 f'(1) = 6 f ′ ( 1 ) = 6 , f ′ ′ ( 1 ) = 18 f''(1) = 18 f ′′ ( 1 ) = 18 and ∫ 0 2 f ( x ) d x = 18 \int_{0}^{2} f(x) \text{ d}x = 18 ∫ 0 2 f ( x ) d x = 18 .
Show answer(a) ∫ c b f ( x ) d x = ∫ a b f ( x ) d x − ∫ a c f ( x ) d x = 8 − 4 = 4 \int_{c}^{b} f(x) \text{ d}x = \int_{a}^{b} f(x) \text{ d}x - \int_{a}^{c} f(x) \text{ d}x = 8 - 4 = 4 ∫ c b f ( x ) d x = ∫ a b f ( x ) d x − ∫ a c f ( x ) d x = 8 − 4 = 4 .
(b) Let A = ∫ 0 1 f ( x ) d x A = \int_{0}^{1} f (x) \text{ d}x A = ∫ 0 1 f ( x ) d x and B = ∫ 0 1 g ( x ) d x B = \int_{0}^{1} g(x) \text{ d}x B = ∫ 0 1 g ( x ) d x . Then the two equations imply that A − 2 B = 6 A − 2B = 6 A − 2 B = 6 and 2 A + 2 B = 9 2A + 2B = 9 2 A + 2 B = 9 . Solving these gives A = 5 A = 5 A = 5 and B = − 1 / 2 B = −1/2 B = − 1/2 , so I = A − B = 11 / 2 I = A − B = 11/2 I = A − B = 11/2 .
(c) f ( x ) = 4 x 3 − 3 x 2 + 5 f(x) = 4x^3 - 3x^2 + 5 f ( x ) = 4 x 3 − 3 x 2 + 5 , because:
f ′ ( 1 ) = a + b = 6 f' (1) = a + b = 6 f ′ ( 1 ) = a + b = 6 .
f ′ ′ ( 1 ) = 2 a + b = 18 f''(1) = 2a + b = 18 f ′′ ( 1 ) = 2 a + b = 18 .
These are two equations with 2 unknowns that solves for a = 12 a=12 a = 12 and b = − 6 b=-6 b = − 6 .
Thus, 18 = ∫ 0 2 4 x 3 − 3 x 2 + C = ∣ 0 2 ( x 4 − x 3 + C x ) = 2 4 − 2 3 + 2 C 18 = \int_{0}^{2} 4x^3 - 3x^2 + C = \Big|_{0}^{2} (x^4 - x^3 + Cx) = 2^4 - 2^3 + 2C 18 = ∫ 0 2 4 x 3 − 3 x 2 + C = 0 2 ( x 4 − x 3 + C x ) = 2 4 − 2 3 + 2 C , which solves for C = 5 C = 5 C = 5 .
Question 12
Evaluate the following integrals.
(a) ∫ 0 3 ( 1 3 e 3 x − 2 + ( x + 2 ) − 1 ) d x \int_{0}^{3} \left( \frac{1}{3}e^{3x - 2} + (x+2)^{-1} \right) \text{ d}x ∫ 0 3 ( 3 1 e 3 x − 2 + ( x + 2 ) − 1 ) d x
(b) ∫ 0 1 x 2 + x + x + 1 x + 1 d x \int_{0}^{1} \frac{x^2 + x + \sqrt{x+1}}{x+1} \text{ d}x ∫ 0 1 x + 1 x 2 + x + x + 1 d x
(c) ∫ 1 b ( A x + b x + c + d x ) d x \int_{1}^{b} \left( A \frac{x + b}{x + c} + \frac{d}{x} \right) \text{ d}x ∫ 1 b ( A x + c x + b + x d ) d x for A , b , c , d A, b, c, d A , b , c , d positive constants
Show answer(a) Using the integration rules and ln ( a ) − ln ( b ) = ln ( a / b ) \ln(a) - \ln(b) = \ln(a/b) ln ( a ) − ln ( b ) = ln ( a / b ) , we obtain:∣ 0 3 [ 1 9 e 3 x − 2 + ln ( x + 2 ) ] = [ 1 9 e 7 + ln ( 5 ) ] − [ 1 9 e − 2 + ln ( 2 ) ] = 1 9 ( e 7 − e − 2 ) + ln ( 5 / 2 ) \Big|_{0}^{3} \left[ \frac{1}{9} e^{3x-2} + \ln(x+2) \right] = \left[\frac{1}{9}e^{7} + \ln(5)\right] - \left[ \frac{1}{9}e^{-2} + \ln(2) \right] = \frac{1}{9}(e^7 - e^{-2}) + \ln(5/2) 0 3 [ 9 1 e 3 x − 2 + ln ( x + 2 ) ] = [ 9 1 e 7 + ln ( 5 ) ] − [ 9 1 e − 2 + ln ( 2 ) ] = 9 1 ( e 7 − e − 2 ) + ln ( 5/2 ) .
(b) We can rewrite x 2 + x + x + 1 x + 1 \frac{x^2 + x + \sqrt{x+1}}{x+1} x + 1 x 2 + x + x + 1 as x + ( x + 1 ) − 1 / 2 x + (x+1)^{-1/2} x + ( x + 1 ) − 1/2 . Note that
The first integral is straightforward: ∫ 0 1 x d x = ∣ 0 1 x 2 2 = 1 2 \int_{0}^{1} x \text{ d}x = \Big|_{0}^{1} \frac{x^2}{2} = \frac{1}{2} ∫ 0 1 x d x = 0 1 2 x 2 = 2 1 .
For the second integral, define u = x + 1 u = x+1 u = x + 1 . This gives d u d x = 1 \frac{\text{d}u}{\text{d}x} = 1 d x d u = 1 , thus d u = d x \text{d}u = \text{d}x d u = d x . When x = 0 , u = 1 x=0, u=1 x = 0 , u = 1 and when x = 1 , u = 2 x=1, u=2 x = 1 , u = 2 . We now obtain ∫ 0 1 ( x + 1 ) − 1 / 2 d x = ∫ 1 2 u − 1 / 2 d u = ∣ 1 2 2 u = 2 ( 2 − 1 ) \int_{0}^{1} (x+1)^{-1/2} \text{ d}x = \int_{1}^{2} u^{-1/2} \text{ d}u = \Big|_{1}^{2} 2\sqrt{u} = 2(\sqrt{2} - 1) ∫ 0 1 ( x + 1 ) − 1/2 d x = ∫ 1 2 u − 1/2 d u = 1 2 2 u = 2 ( 2 − 1 ) .
Thus, the final result is 1 2 + 2 ( 2 − 1 ) = 2 2 − 3 2 \frac{1}{2} + 2(\sqrt{2} - 1) = 2\sqrt{2} - \frac{3}{2} 2 1 + 2 ( 2 − 1 ) = 2 2 − 2 3 .
(c) The final result is: A ( b − 1 ) + A ( b − c ) ln [ ( b + c ) / ( 1 + c ) ] + d ln b A(b-1) + A(b-c)\ln[(b+c)/(1+c)] + d\ln b A ( b − 1 ) + A ( b − c ) ln [( b + c ) / ( 1 + c )] + d ln b . You can get there by recognizing:
∫ 1 b ( A x + b x + c + d x ) d x = A ∫ 1 b x + b x + c d x + d ∫ 1 b 1 x d x \int_{1}^{b} \left( A \frac{x + b}{x + c} + \frac{d}{x} \right) \text{ d}x = A\int_{1}^{b} \frac{x+b}{x+c} \text{ d}x + d \int_{1}^{b} \frac{1}{x} \text{ d}x ∫ 1 b ( A x + c x + b + x d ) d x = A ∫ 1 b x + c x + b d x + d ∫ 1 b x 1 d x (split the integral).
Note that x + b x + c = ( x + c ) + ( b − c ) x + c = 1 + b − c x + c \frac{x+b}{x+c} = \frac{(x+c) + (b-c)}{x+c} = 1 + \frac{b-c}{x+c} x + c x + b = x + c ( x + c ) + ( b − c ) = 1 + x + c b − c (rewrite the fraction).
Now, we can evaluate the following integrals:
∫ 1 b 1 x d x = ln b \int_{1}^{b} \frac{1}{x} \text{ d}x = \ln b ∫ 1 b x 1 d x = ln b , as ln 1 = 0 \ln 1 = 0 ln 1 = 0 .
∫ 1 b 1 = b − 1 \int_{1}^{b} 1 = b-1 ∫ 1 b 1 = b − 1 .
∫ 1 b 1 x + c = ∣ 1 b ln ( x + c ) = ln ( b + c ) − ln ( 1 + c ) = ln [ ( b + c ) / ( c + 1 ) ] \int_{1}^{b} \frac{1}{x+c} = \Big|_{1}^{b} \ln(x+c) = \ln(b + c) - \ln(1 +c) = \ln[(b+c)/(c+1)] ∫ 1 b x + c 1 = 1 b ln ( x + c ) = ln ( b + c ) − ln ( 1 + c ) = ln [( b + c ) / ( c + 1 )] .
Adding all the parts together (including the constants), yields the desired result.
Question 13
Let F ( x ) = ∫ 0 x ( t 2 + 2 ) d t F(x) = \int_{0}^{x} (t^2 + 2) \text{ d}t F ( x ) = ∫ 0 x ( t 2 + 2 ) d t and G ( x ) = ∫ 0 x 2 ( t 2 + 2 ) d t . G(x) = \int_{0}^{x^{2}} (t^2 + 2) \text{ d}t. G ( x ) = ∫ 0 x 2 ( t 2 + 2 ) d t . Find F ′ ( x ) F'(x) F ′ ( x ) and G ′ ( x ) G'(x) G ′ ( x ) .
Show answerSince the derivative of the definite integral with respect to the upper limit of integration is equal to the integrand evaluated at that limit, i.e.,
d d t ∫ a t f ( x ) d x = F ′ ( t ) = f ( t ) \frac{\text{d}}{\text{d}t} \int_{a}^{t} f(x) \text{d} x = F'(t) = f(t) d t d ∫ a t f ( x ) d x = F ′ ( t ) = f ( t ) ,
we know that F ′ ( x ) = x 2 + 2 F'(x) = x^2 + 2 F ′ ( x ) = x 2 + 2 . Combined with the chain rule, it implies that G ′ ( x ) = G ′ ( x 2 ) × d x 2 d x = [ ( x 2 ) 2 + 2 ] × 2 x = 2 x 5 + 4 x G'(x) = G' (x^2) \times \frac{\text{d}x^2}{\text{d}x} = [(x^2)^2 + 2] \times 2x = 2x^5 + 4x G ′ ( x ) = G ′ ( x 2 ) × d x d x 2 = [( x 2 ) 2 + 2 ] × 2 x = 2 x 5 + 4 x .
Question 14
Find the following expressions.
(a) d d t ∫ t 3 e − x 2 d x \frac{\text{d}}{\text{d}t} \int_{t}^{3} e^{-x^{2}} \text{ d}x d t d ∫ t 3 e − x 2 d x
(b) d d t ∫ − t t 1 x 4 + 1 d x \frac{\text{d}}{\text{d} t} \int_{-t}^{t} \frac{1}{\sqrt{x^{4} + 1}} \text{ d}x d t d ∫ − t t x 4 + 1 1 d x
Show answer(a) − e − t 2 -e^{-t^2} − e − t 2
(b) 2 / t 4 + 1 2/\sqrt{t^4 +1} 2/ t 4 + 1
By using the following rule, these results are immediate. If a ( t ) a(t) a ( t ) and b ( t ) b(t) b ( t ) are differentiable and f ( x ) f(x) f ( x ) is continuous,
d d t ∫ a ( t ) b ( t ) f ( x ) d x = f ( b ( t ) ) b ′ ( t ) − f ( a ( t ) ) a ′ ( t ) \frac{\text{d}}{\text{d}t} \int_{a(t)}^{b(t)} f(x) \text{d}x = f(b(t))b'(t) - f(a(t))a'(t) d t d ∫ a ( t ) b ( t ) f ( x ) d x = f ( b ( t )) b ′ ( t ) − f ( a ( t )) a ′ ( t ) .
Question 15
Use integration by parts to evaluate the following:
(a) ∫ x e − x d x \int x e^{-x} \text{ d}x ∫ x e − x d x
(b) ∫ 3 x e 4 x d x \int 3x e^{4x} \text{ d}x ∫ 3 x e 4 x d x
(c) ∫ ( 1 + x 2 ) e − x d x \int (1+x^2)e^{-x} \text{ d}x ∫ ( 1 + x 2 ) e − x d x
(d) ∫ x ln x d x \int x \ln x \text{ d}x ∫ x ln x d x
(e) ∫ − 1 1 x ln ( x + 2 ) d x \int_{-1}^{1} x \ln (x+2) \text{ d}x ∫ − 1 1 x ln ( x + 2 ) d x
(f) ∫ 0 2 x 2 x d x \int_{0}^{2} x 2^{x} \text{ d}x ∫ 0 2 x 2 x d x
(g) ∫ 0 1 x 2 e x d x \int_{0}^{1} x^{2}e^{x} \text{ d}x ∫ 0 1 x 2 e x d x
(h) ∫ 0 3 x 1 + x d x \int_{0}^{3} x\sqrt{1 + x} \text{ d}x ∫ 0 3 x 1 + x d x
Show answerIntegration by Parts can be applied using the following formula:
∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x \int f(x) g'(x) \text{ d}x = f(x)g(x) - \int f' (x)g(x) \text{ d}x ∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x .
(a) Choose f ( x ) = x f(x) = x f ( x ) = x and g ′ ( x ) = e − x g' (x) = e^{-x} g ′ ( x ) = e − x . Then we obtain
∫ x e − x d x = x ( − e − x ) − ∫ 1 ⋅ ( − e − x ) d x = − x e − x − e − x + C \int xe^{−x} \text{ d}x = x(−e^{−x}) − \int 1 \cdot (−e^{−x}) \text{ d}x = −xe^{−x} − e^{−x} + C ∫ x e − x d x = x ( − e − x ) − ∫ 1 ⋅ ( − e − x ) d x = − x e − x − e − x + C .
(b) 3 4 x e 4 x − 3 16 e 4 x + C \frac{3}{4}xe^{4x} - \frac{3}{16}e^{4x} + C 4 3 x e 4 x − 16 3 e 4 x + C .
(c) − x 2 e − x − 2 x e − x − 3 e − x + C -x^2 e^{-x} - 2x e^{-x} - 3e^{-x} + C − x 2 e − x − 2 x e − x − 3 e − x + C .
(d) 1 2 x 2 ln x − 1 4 x 2 + C \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C 2 1 x 2 ln x − 4 1 x 2 + C .
(e) ∫ − 1 1 x ln ( x + 2 ) d x = ∣ − 1 1 1 2 x 2 ln ( x + 2 ) − ∫ − 1 1 1 2 x 2 1 x + 2 d x \int_{-1}^{1} x \ln (x+2) \text{ d}x = \Big|_{-1}^{1} \frac{1}{2}x^2 \ln(x+2) - \int_{-1}^{1} \frac{1}{2}x^2 \frac{1}{x+2} \text{ d}x ∫ − 1 1 x ln ( x + 2 ) d x = − 1 1 2 1 x 2 ln ( x + 2 ) − ∫ − 1 1 2 1 x 2 x + 2 1 d x
= 1 2 ln 3 − 1 2 ∫ − 1 1 ( x − 2 + 4 x + 2 ) d x = 2 − 3 2 ln 3 = \frac{1}{2} \ln 3 - \frac{1}{2}\int_{-1}^{1} (x-2 + \frac{4}{x+2}) \text{ d}x = 2 - \frac{3}{2}\ln 3 = 2 1 ln 3 − 2 1 ∫ − 1 1 ( x − 2 + x + 2 4 ) d x = 2 − 2 3 ln 3 .
(f) 8 / ( ln 2 ) − 3 / ( ln 2 ) 2 8/(\ln 2) - 3/(\ln 2)^2 8/ ( ln 2 ) − 3/ ( ln 2 ) 2 .
(g) e − 2 e - 2 e − 2 .
(h) 7 11 15 = 116 15 7\frac{11}{15} = \frac{116}{15} 7 15 11 = 15 116 .
Question 16
Note that we can always write f ( x ) = 1 ⋅ f ( x ) f(x) = 1 \cdot f(x) f ( x ) = 1 ⋅ f ( x ) for any function f ( x ) f(x) f ( x ) . Use this fact and integration by parts to prove that ∫ f ( x ) d x = x f ( x ) − ∫ x f ′ ( x ) d x \int f(x) \text{ d}x = xf(x) - \int x f'(x) \text{ d}x ∫ f ( x ) d x = x f ( x ) − ∫ x f ′ ( x ) d x . Apply this formula to f ( x ) = ln x f(x) = \ln x f ( x ) = ln x .
Show answerThis result follows directly by defining f ( x ) = f ( x ) ⋅ g ′ ( x ) f (x) = f(x) \cdot g'(x) f ( x ) = f ( x ) ⋅ g ′ ( x ) , where g ′ ( x ) = 1 g'(x) = 1 g ′ ( x ) = 1 . Filling in the formula ∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x \int f(x) g'(x) \text{ d}x = f(x)g(x) - \int f' (x)g(x) \text{ d}x ∫ f ( x ) g ′ ( x ) d x = f ( x ) g ( x ) − ∫ f ′ ( x ) g ( x ) d x then yields the desired result ∫ f ( x ) d x = x ⋅ f ( x ) − ∫ x f ′ ( x ) d x \int f(x) \text{ d}x = x \cdot f(x) - \int x f'(x) \text{ d}x ∫ f ( x ) d x = x ⋅ f ( x ) − ∫ x f ′ ( x ) d x .
For f ( x ) = ln x f(x) = \ln x f ( x ) = ln x , we now obtain ∫ ln x d x = x ln x − ∫ x 1 x d x = x ln x − x + C \int \ln x \text{ d}x = x\ln x - \int x \frac{1}{x} \text{ d}x = x \ln x - x + C ∫ ln x d x = x ln x − ∫ x x 1 d x = x ln x − x + C .
Question 17
Evaluate the following integrals for r ≠ 0 r \neq 0 r = 0 :
(a) ∫ 0 T b t e − r t d t \int_{0}^{T} bt e^{-rt} \text{ d}t ∫ 0 T b t e − r t d t
(b) ∫ 0 T ( a + b t ) e − r t d t \int_{0}^{T} (a + bt)e^{-rt} \text{ d}t ∫ 0 T ( a + b t ) e − r t d t
(c) ∫ 0 T ( a − b t + c t 2 ) e − r t d t \int_{0}^{T} (a - bt + ct^{2})e^{-rt} \text{ d}t ∫ 0 T ( a − b t + c t 2 ) e − r t d t
Show answer(a) b r − 2 [ 1 − ( 1 + r T ) e − r T ] br^ {−2} \left[1 − (1 + rT )e^{−rT} \right] b r − 2 [ 1 − ( 1 + r T ) e − r T ] .
(b) a r − 1 ( 1 − e − r T ) + b r − 2 [ 1 − ( 1 + r T ) e − r T ] ar^{−1} (1 − e^{−rT}) + br^{−2}\left[1 − (1 + rT )e^{−rT}\right] a r − 1 ( 1 − e − r T ) + b r − 2 [ 1 − ( 1 + r T ) e − r T ] .
(c) a r − 1 ( 1 − e − r T ) − b r − 2 [ 1 − ( 1 + r T ) e − r T ] ar^{−1}(1 − e^{−rT}) − br^{−2}\left[1 − (1 + rT )e^{−rT}\right] a r − 1 ( 1 − e − r T ) − b r − 2 [ 1 − ( 1 + r T ) e − r T ]
+ c r − 3 [ 2 ( 1 − e − r T ) − 2 r T e − r T − r 2 T 2 e − r T ] \ \ \ + \ c r^{−3}\left[2 (1 − e^{−rT}) − 2rTe^{−rT} − r^2 T^2 e^{−rT}\right] + c r − 3 [ 2 ( 1 − e − r T ) − 2 r T e − r T − r 2 T 2 e − r T ] .