Exercises 2

This page allows you to practice some exercises on Integration. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

Question 10

Evaluate the following integrals.

(a) 22(exex) dx\int_{-2}^{2} (e^{x} - e^{-x}) \text{ d}x

(b) 2101x1 dx\int_{2}^{10} \frac{1}{x-1} \text{ d}x

(c) 012xex2 dx \int_{0}^{1} 2xe^{x^{2}} \text{ d}x

(d) 121+x3x2 dx\int_{1}^{2} \frac{1 + x^{3}}{x^{2}} \text{ d}x

Show answer

(a) 22(ex+ex)=(e2+e2)(e2+e2)=0\Big|_{-2}^{2} (e^{x} + e^{-x}) = (e^{2} + e^{-2}) - (e^{-2} + e^{2}) = 0.

(b) 210ln(x1)=ln(9)ln(1)=ln9\Big|_{2}^{10} \ln(x-1) = \ln(9) - \ln(1) = \ln 9.

(c) Let u=x2    dudx=2x    du=2x dxu = x^2 \implies \frac{\text{d}u}{\text{d}x} = 2x \implies \text{d}u = 2x \text{ d}x. This is very useful, because the integral can now be represented as

01eu du=01eu=e1e0=e1\int_{0}^{1} e^{u} \text{ d}u = \Big|_{0}^{1} e^{u} = e^{1} - e^{0} = e - 1,

where the bounds have been adapted to uu instead of xx, but remained the same as

  • x=0    u=0;x=0 \implies u=0;

  • x=1    u=1x=1 \implies u = 1.

(d) 121+x3x2 dx=12(1x2+x) dx=12(1x+12x2)=2\int_{1}^{2} \frac{1+x^3}{x^2} \text{ d}x = \int_{1}^{2} \left( \frac{1}{x^2} + x \right) \text{ d}x = \Big|_{1}^{2} \left( -\frac{1}{x} + \frac{1}{2}x^{2} \right) = 2.

Question 11

Solve the following problems.

(a) If abf(x) dx=8\int_{a}^{b} f(x) \text{ d}x = 8 and acf(x) dx=4\int_{a}^{c} f(x) \text{ d}x = 4, what is cbf(x) dx\int_{c}^{b} f(x) \text{ d}x?

(b) If 01(f(x)2g(x)) dx=6\int_{0}^{1} (f(x) - 2g(x)) \text{ d}x = 6 and 01(2f(x)+2g(x)) dx=9\int_{0}^{1} (2f(x) + 2 g(x)) \text{ d}x = 9, find I=01(f(x)g(x)) dxI = \int_{0}^{1} (f(x) - g(x)) \text{ d}x.

(c) Find the function f(x)f(x) if f(x)=ax2+bxf'(x) = ax^{2} + bx, f(1)=6f'(1) = 6, f(1)=18f''(1) = 18 and 02f(x) dx=18\int_{0}^{2} f(x) \text{ d}x = 18.

Show answer

(a) cbf(x) dx=abf(x) dxacf(x) dx=84=4\int_{c}^{b} f(x) \text{ d}x = \int_{a}^{b} f(x) \text{ d}x - \int_{a}^{c} f(x) \text{ d}x = 8 - 4 = 4.

(b) Let A=01f(x) dxA = \int_{0}^{1} f (x) \text{ d}x and B=01g(x) dxB = \int_{0}^{1} g(x) \text{ d}x. Then the two equations imply that A2B=6A − 2B = 6 and 2A+2B=92A + 2B = 9. Solving these gives A=5A = 5 and B=1/2B = −1/2, so I=AB=11/2I = A − B = 11/2.

(c) f(x)=4x33x2+5f(x) = 4x^3 - 3x^2 + 5, because:

  • f(1)=a+b=6f' (1) = a + b = 6.

  • f(1)=2a+b=18f''(1) = 2a + b = 18.

  • These are two equations with 2 unknowns that solves for a=12a=12 and b=6b=-6.

  • Thus, 18=024x33x2+C=02(x4x3+Cx)=2423+2C18 = \int_{0}^{2} 4x^3 - 3x^2 + C = \Big|_{0}^{2} (x^4 - x^3 + Cx) = 2^4 - 2^3 + 2C, which solves for C=5C = 5.

Question 12

Evaluate the following integrals.

(a) 03(13e3x2+(x+2)1) dx\int_{0}^{3} \left( \frac{1}{3}e^{3x - 2} + (x+2)^{-1} \right) \text{ d}x

(b) 01x2+x+x+1x+1 dx\int_{0}^{1} \frac{x^2 + x + \sqrt{x+1}}{x+1} \text{ d}x

(c) 1b(Ax+bx+c+dx) dx\int_{1}^{b} \left( A \frac{x + b}{x + c} + \frac{d}{x} \right) \text{ d}x for A,b,c,dA, b, c, d positive constants

Show answer

(a) Using the integration rules and ln(a)ln(b)=ln(a/b)\ln(a) - \ln(b) = \ln(a/b), we obtain:03[19e3x2+ln(x+2)]=[19e7+ln(5)][19e2+ln(2)]=19(e7e2)+ln(5/2)\Big|_{0}^{3} \left[ \frac{1}{9} e^{3x-2} + \ln(x+2) \right] = \left[\frac{1}{9}e^{7} + \ln(5)\right] - \left[ \frac{1}{9}e^{-2} + \ln(2) \right] = \frac{1}{9}(e^7 - e^{-2}) + \ln(5/2).

(b) We can rewrite x2+x+x+1x+1\frac{x^2 + x + \sqrt{x+1}}{x+1} as x+(x+1)1/2x + (x+1)^{-1/2}. Note that

  • The first integral is straightforward: 01x dx=01x22=12\int_{0}^{1} x \text{ d}x = \Big|_{0}^{1} \frac{x^2}{2} = \frac{1}{2}.

  • For the second integral, define u=x+1u = x+1. This gives dudx=1\frac{\text{d}u}{\text{d}x} = 1, thus du=dx\text{d}u = \text{d}x. When x=0,u=1x=0, u=1 and when x=1,u=2x=1, u=2. We now obtain 01(x+1)1/2 dx=12u1/2 du=122u=2(21)\int_{0}^{1} (x+1)^{-1/2} \text{ d}x = \int_{1}^{2} u^{-1/2} \text{ d}u = \Big|_{1}^{2} 2\sqrt{u} = 2(\sqrt{2} - 1).

Thus, the final result is 12+2(21)=2232\frac{1}{2} + 2(\sqrt{2} - 1) = 2\sqrt{2} - \frac{3}{2}.

(c) The final result is: A(b1)+A(bc)ln[(b+c)/(1+c)]+dlnbA(b-1) + A(b-c)\ln[(b+c)/(1+c)] + d\ln b. You can get there by recognizing:

  • 1b(Ax+bx+c+dx) dx=A1bx+bx+c dx+d1b1x dx\int_{1}^{b} \left( A \frac{x + b}{x + c} + \frac{d}{x} \right) \text{ d}x = A\int_{1}^{b} \frac{x+b}{x+c} \text{ d}x + d \int_{1}^{b} \frac{1}{x} \text{ d}x (split the integral).

  • Note that x+bx+c=(x+c)+(bc)x+c=1+bcx+c\frac{x+b}{x+c} = \frac{(x+c) + (b-c)}{x+c} = 1 + \frac{b-c}{x+c} (rewrite the fraction).

Now, we can evaluate the following integrals:

  • 1b1x dx=lnb\int_{1}^{b} \frac{1}{x} \text{ d}x = \ln b, as ln1=0\ln 1 = 0.

  • 1b1=b1\int_{1}^{b} 1 = b-1.

  • 1b1x+c=1bln(x+c)=ln(b+c)ln(1+c)=ln[(b+c)/(c+1)]\int_{1}^{b} \frac{1}{x+c} = \Big|_{1}^{b} \ln(x+c) = \ln(b + c) - \ln(1 +c) = \ln[(b+c)/(c+1)].

Adding all the parts together (including the constants), yields the desired result.

Question 13

Let F(x)=0x(t2+2) dtF(x) = \int_{0}^{x} (t^2 + 2) \text{ d}t and G(x)=0x2(t2+2) dt.G(x) = \int_{0}^{x^{2}} (t^2 + 2) \text{ d}t. Find F(x)F'(x) and G(x)G'(x).

Show answer

Since the derivative of the definite integral with respect to the upper limit of integration is equal to the integrand evaluated at that limit, i.e.,

ddtatf(x)dx=F(t)=f(t)\frac{\text{d}}{\text{d}t} \int_{a}^{t} f(x) \text{d} x = F'(t) = f(t),

we know that F(x)=x2+2F'(x) = x^2 + 2. Combined with the chain rule, it implies that G(x)=G(x2)×dx2dx=[(x2)2+2]×2x=2x5+4xG'(x) = G' (x^2) \times \frac{\text{d}x^2}{\text{d}x} = [(x^2)^2 + 2] \times 2x = 2x^5 + 4x.

Question 14

Find the following expressions.

(a) ddtt3ex2 dx\frac{\text{d}}{\text{d}t} \int_{t}^{3} e^{-x^{2}} \text{ d}x

(b) ddttt1x4+1 dx\frac{\text{d}}{\text{d} t} \int_{-t}^{t} \frac{1}{\sqrt{x^{4} + 1}} \text{ d}x

Show answer

(a) et2-e^{-t^2}

(b) 2/t4+12/\sqrt{t^4 +1}

By using the following rule, these results are immediate. If a(t)a(t) and b(t)b(t) are differentiable and f(x)f(x) is continuous,

ddta(t)b(t)f(x)dx=f(b(t))b(t)f(a(t))a(t)\frac{\text{d}}{\text{d}t} \int_{a(t)}^{b(t)} f(x) \text{d}x = f(b(t))b'(t) - f(a(t))a'(t).

Question 15

Use integration by parts to evaluate the following:

(a) xex dx\int x e^{-x} \text{ d}x

(b) 3xe4x dx\int 3x e^{4x} \text{ d}x

(c) (1+x2)ex dx\int (1+x^2)e^{-x} \text{ d}x

(d) xlnx dx\int x \ln x \text{ d}x

(e) 11xln(x+2) dx\int_{-1}^{1} x \ln (x+2) \text{ d}x

(f) 02x2x dx\int_{0}^{2} x 2^{x} \text{ d}x

(g) 01x2ex dx\int_{0}^{1} x^{2}e^{x} \text{ d}x

(h) 03x1+x dx\int_{0}^{3} x\sqrt{1 + x} \text{ d}x

Show answer

Integration by Parts can be applied using the following formula:

f(x)g(x) dx=f(x)g(x)f(x)g(x) dx\int f(x) g'(x) \text{ d}x = f(x)g(x) - \int f' (x)g(x) \text{ d}x.


(a) Choose f(x)=xf(x) = x and g(x)=exg' (x) = e^{-x}. Then we obtain

xex dx=x(ex)1(ex) dx=xexex+C\int xe^{−x} \text{ d}x = x(−e^{−x}) − \int 1 \cdot (−e^{−x}) \text{ d}x = −xe^{−x} − e^{−x} + C.

(b) 34xe4x316e4x+C\frac{3}{4}xe^{4x} - \frac{3}{16}e^{4x} + C.

(c) x2ex2xex3ex+C-x^2 e^{-x} - 2x e^{-x} - 3e^{-x} + C.

(d) 12x2lnx14x2+C\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C.

(e) 11xln(x+2) dx=1112x2ln(x+2)1112x21x+2 dx\int_{-1}^{1} x \ln (x+2) \text{ d}x = \Big|_{-1}^{1} \frac{1}{2}x^2 \ln(x+2) - \int_{-1}^{1} \frac{1}{2}x^2 \frac{1}{x+2} \text{ d}x

=12ln31211(x2+4x+2) dx=232ln3= \frac{1}{2} \ln 3 - \frac{1}{2}\int_{-1}^{1} (x-2 + \frac{4}{x+2}) \text{ d}x = 2 - \frac{3}{2}\ln 3.

(f) 8/(ln2)3/(ln2)28/(\ln 2) - 3/(\ln 2)^2.

(g) e2e - 2.

(h) 71115=116157\frac{11}{15} = \frac{116}{15}.

Question 16

Note that we can always write f(x)=1f(x)f(x) = 1 \cdot f(x) for any function f(x)f(x). Use this fact and integration by parts to prove that f(x) dx=xf(x)xf(x) dx\int f(x) \text{ d}x = xf(x) - \int x f'(x) \text{ d}x. Apply this formula to f(x)=lnxf(x) = \ln x.

Show answer

This result follows directly by defining f(x)=f(x)g(x)f (x) = f(x) \cdot g'(x), where g(x)=1g'(x) = 1. Filling in the formula f(x)g(x) dx=f(x)g(x)f(x)g(x) dx\int f(x) g'(x) \text{ d}x = f(x)g(x) - \int f' (x)g(x) \text{ d}x then yields the desired result f(x) dx=xf(x)xf(x) dx\int f(x) \text{ d}x = x \cdot f(x) - \int x f'(x) \text{ d}x.

For f(x)=lnxf(x) = \ln x, we now obtain lnx dx=xlnxx1x dx=xlnxx+C\int \ln x \text{ d}x = x\ln x - \int x \frac{1}{x} \text{ d}x = x \ln x - x + C.

Question 17

Evaluate the following integrals for r0r \neq 0:

(a) 0Tbtert dt\int_{0}^{T} bt e^{-rt} \text{ d}t

(b) 0T(a+bt)ert dt\int_{0}^{T} (a + bt)e^{-rt} \text{ d}t

(c) 0T(abt+ct2)ert dt\int_{0}^{T} (a - bt + ct^{2})e^{-rt} \text{ d}t

Show answer

(a) br2[1(1+rT)erT]br^ {−2} \left[1 − (1 + rT )e^{−rT} \right].

(b) ar1(1erT)+br2[1(1+rT)erT]ar^{−1} (1 − e^{−rT}) + br^{−2}\left[1 − (1 + rT )e^{−rT}\right].

(c) ar1(1erT)br2[1(1+rT)erT]ar^{−1}(1 − e^{−rT}) − br^{−2}\left[1 − (1 + rT )e^{−rT}\right]    + cr3[2(1erT)2rTerTr2T2erT]\ \ \ + \ c r^{−3}\left[2 (1 − e^{−rT}) − 2rTe^{−rT} − r^2 T^2 e^{−rT}\right].

Last updated