Exercises 1

This page allows you to practice some exercises on Integration. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

Question 1

Find the following integrals.

(a) x13 dx\int x^{13} \text{ d}x

(b) xx dx \int x\sqrt{x} \text{ d}x

(c) xxx dx\int \sqrt{x \sqrt{x \sqrt{x}}} \text{ d}x

(d) ex/4 dx \int e^{x/4} \text{ d}x

(e) 3e2x dx\int 3e^{-2x} \text{ d}x

(f) 2x dx\int 2^{x} \text{ d}x

(g) (x3+2x3) dx \int (x^{3} + 2x - 3) \text{ d}x

(h) (x1)2 dx\int (x-1)^{2} \text{ d}x

Show answer

(a) 114x14+C\frac{1}{14}x^{14} + C.

(b) 25x2x+C\frac{2}{5}x^2\sqrt{x} + C.

(c) 815x5/18+C\frac{8}{15}x^{5/18} + C, by exploiting the fact that xxx=x7/8\sqrt{x\sqrt{x \sqrt{x}}} = x^{7/8}.

(d) 14e14x+C\frac{1}{4}e^{\frac{1}{4}x} + C.

(e) 32e2x+C-\frac{3}{2}e^{-2x} + C.

(f) (1/ln2)2x+C(1/\ln 2)2^{x} + C.

(g) 14x4+x23x+C\frac{1}{4}x^{4} + x^{2} - 3x + C.

(h) 13(x1)3+C\frac{1}{3}(x-1)^{3} + C.

Question 2

Find the following integrals.

(a) (x1)(x+2) dx \int (x-1)(x+2) \text{ d}x

(b) x33x+4x dx\int \frac{x^{3} - 3x + 4}{x} \text{ d}x

(c) (y2)2y dy\int \frac{(y - 2)^2}{\sqrt{y}} \text{ d}y

(d) x3x+1 dx\int \frac{x^{3}}{x + 1} \text{ d}x

(e) x(1+x2)15 dx \int x(1+x^2)^{15} \text{ d}x

Hints: In part (c), first expand the numerator, and then divide each term by the denominator. In part (d), use polynomial division. In part (e), what is the derivative of (1+x2)16(1+x^2)^{16}?

Show answer

(a) 13x3+12x22x+C\frac{1}{3}x^3 + \frac{1}{2}x^2 - 2x + C.

(b) 13x33x+4lnx+C\frac{1}{3}x^3 - 3x + 4 \ln |x| + C.

(c) 25y2y83yy+8y+C\frac{2}{5}y^2\sqrt{y} - \frac{8}{3} y\sqrt{y} + 8\sqrt{y} + C.

(d) 13x312x2+xlnx+1+C\frac{1}{3}x^3 - \frac{1}{2} x^2 + x - \ln |x+1| + C, as x3/(x+1)=x2x+11/(x+1)x^3/(x+1) = x^2 - x + 1 - 1/(x+1).

(e) 132(1+x2)16+C\frac{1}{32} (1 + x^2)^{16} + C.

Question 3

Provided a0a \neq 0 and p1p \neq -1, show that (ax+b)p dx=1a(p+1)(ax+b)p+1+C \int (ax +b)^{p} \text{ d}x = \frac{1}{a(p+1)} (ax + b)^{p+1} + C.

Show answer

The result follows directly by differentiating the right-hand side. You obtain the required integrand.

Another way to show the result is to actually evaluate the integral, which can be done using integration by substitution.

Question 4

Find F(x)F(x) if:

(a) F(x)=12ex2xF'(x) = \frac{1}{2}e^{x} - 2x and F(0)=12F(0) = \frac{1}{2}.

(b) F(x)=x(1x2)F'(x) = x(1 - x^{2}) and F(1)=512F(1) = \frac{5}{12}.

Show answer

(a) F(x)=(12ex2x)dx=12exx2+CF(x) = \int \left( \frac{1}{2} e^{x} - 2x \right) \text {d}x = \frac{1}{2} e^{x} - x^2 + C. Then F(0)=1/2F(0) = 1/2 implies C=0C=0.

(b) F(x)=(xx3) dx=12x214x4+CF(x) = \int (x - x^{3}) \text{ d}x = \frac{1}{2}x^2 - \frac{1}{4} x^4 + C. Then F(1)=5/12F(1) = 5/12 implies C=1/6C = 1/6.

Question 5

Suppose that f(x)=x2+x3+2f''(x) = x^{-2} + x^{3} + 2 for x>0x > 0, and f(1)=0,f(1)=1/4f(1) = 0, f'(1) = 1/4. Find f(x)f(x).

Show answer

f(x)=lnx+120x5+x2x120f(x) = -\ln x + \frac{1}{20} x^{5} + x^{2} - x - \frac{1}{20}.

Question 6

Compute the area bounded by the graph of each of the following functions over the indicated interval.

(a) f(x)=3x2,f(x) = 3x^2, in [0,2][0,2]

(b) f(x)=1/x2f(x) = 1/x^2, in [1,10][1, 10]

Show answer

(a) 023x2 dx=02x3=80=8.\int_{0}^{2} 3x^2 \text{ d}x = \Big|_{0}^{2} x^{3} = 8 - 0 = 8.

(b) 1101/x2=110(1/x)=1/10(1)=9/10 \int_{1}^{10} 1/x^{2} = \Big|_{1}^{10} (-1/x) = -1/10 - (- 1) = 9/10.

Question 7

Compute the area bounded by the graph of f(x)=1/x3f(x) = 1/x^3, the xx-axis, and the two lines x=2x= -2 and x=1x= -1. Hint: f(x)<0f(x) < 0 in [2,1][-2, -1].

Show answer

A=21x3dx=21(12)x2=[12(18)]=38A = -\int_{-2}^{-1} x^{-3} \text {d}x = - \Big|_{-2}^{-1} \left(-\frac{1}{2} \right) x^{-2} = -\left[-\frac{1}{2} - \left(-\frac{1}{8} \right) \right] = \frac{3}{8}.

Question 8

Evaluate the following integrals:

(a) 12(2x+x2) dx\int_{1}^{2} (2x + x^2) \text{ d}x

(b) 23(12x213x3) dx\int_{-2}^{3} \left( \frac{1}{2}x^{2} - \frac{1}{3}x^{3} \right) \text{ d}x

(c) 23(1t1+t) dt\int_{2}^{3} \left( \frac{1}{t-1} + t \right) \text{ d}t

Show answer

(a) 12x2+13x3=(4+83)(1+13)=16/3.\Big|_{1}^{2} x^2 + \frac{1}{3}x^{3} = \left(4 + \frac{8}{3} \right) - \left(1 + \frac{1}{3} \right) = 16/3.

(b) 2316x3112x4=2712(3212)=5/12.\Big|_{-2}^{3} \frac{1}{6}x^{3} - \frac{1}{12} x^{4} = -\frac{27}{12} - \left(-\frac{32}{12} \right) = 5/12.

(c) 23ln(t1)+12t3=(ln2+92)(ln1+42)=ln2+5/2, as ln1=0.\Big|_{2}^{3} \ln(t-1) + \frac{1}{2}t^3 = \left(\ln 2 + \frac{9}{2} \right) - \left(\ln1 + \frac{4}{2} \right) = \ln 2 + 5/2, \text{ as } \ln 1 = 0.

Question 9

Let f(x)=x(x1)(x2)f(x) = x(x-1)(x-2).

(a) Calculate f(x)f'(x). Where is f(x)f(x) increasing?

(b) Calculate 01f(x) dx\int_{0}^{1} f(x) \text{ d}x.

Show answer

(a) Since f(x)=x33x2+2xf(x) = x^3 - 3x^2 + 2x, we obtain f(x)=3x26x+2f'(x) = 3x^2 - 6x + 2. Setting this derivative equal to zero, we obtain x0=113xx_{0} = 1 - \frac{1}{3}\sqrt{x} and x1=1+133x_{1} = 1 + \frac{1}{3}\sqrt{3}. So, f(x)f(x) increases in (,x0)(-\infty, x_{0})and in (x1,)(x_{1}, \infty).

(b) 01x33x2+2x=14x4x3+x2=(141+1)0=14\int_{0}^{1} x^3 - 3x^2 + 2x = \Big| \frac{1}{4}x^4 - x^3 + x^2 = \left( \frac{1}{4} - 1 + 1 \right) - 0 = \frac{1}{4}. You could also graph this to get some insights in what area you have exactly calculated.

Last updated