This page allows you to practice some exercises on Solving Equations. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.
These questions correspond to the following sections:
- Section 3.1 - Solving Equations
- Section 3.2 - Equations and Their Parameters
- Section 3.3 - Quadratic Equations
Question 1
Solve each of the following equations.
(a) 4x+2(x−4)−3=2(3x−5)−1
(b) (3x−1)2+(4x+1)2=(5x−1)(5x+1)+1
(c) x+3x−3=x+4x−4
(d) x−33−x+32=x2−99
(e) 1+x2−x/(1−x)=2x+16
(f) 21(2x−43)−41(1−3x)−31(1−x)=−31
Show answer
(a) Any x is a solution.
(b) x=−1.
(c) x=0.
(d) x=−6.
(e) x=4.
(f) x=15/16.
Question 2
Solve the following equations for the indicated variables.
(a) 21py−1/2−w=0for y
(b) 1+z+1+zaz=0for z
(c) (3+a2)x=1for x
(d) pq−3q=5for p
(e) 41L−3/4K1/221K−1/2L1/4=wrfor L
(f) 21pK−1/4(21wr)1/4=rfor K
Show answer
(a) y=4w2p2.
(b) z=−1+a1.
(c) x=0.
(d) p=(3q+5)2/q.
(e) L=rK/2w.
(f) K=321p4r−3w−1=p4/(32r3w).
Question 3
Solve the following quadratic equations, if they have solutions.
(a) x(x+1)=2x(x−1)
(b) x2−4x+4=0
(c) −41x2+21x+21=0
(d) x(x−5)−3=0
(e) z2+(3−2)z=6
(f) y2−3y+2=0
(g) 9y2+42y+44=0
Show answer
(a) x=0 and x=3.
(b) x=2. Note thatx2−4x+4=(x−2)2.
(c) −41x2+21x+21=−41[x−(1+3)][x−(1−3)]=0 for x=1±3.
(d) x2−5x−3=[x−21(5+37)][x−21(5−37)]=0 for x=21(5±37).
(e) z=−3,z=2.
(f) y=1,y=2.
(g) y=31(−7±5).
Question 4
In a right-angled triangle, the hypotenuse is 34 cm. One of the short sides is 14 cm longer than the other. Find the lengths of the two short sides.
Show answer
The length x of the shortest side satisfies x2+(x+14)2=342 , or 2x2+28x=1156−196=960, or x2+14x−480=0. The lengths are 16 cm and 30 cm.
Question 5
(a) x3−4x=0
(b) x4−5x2+4=0
Show answer
(a) x=−2,x=0,x=2. Note that x(x2−4)=0 or equivalenty, x(x+2)(x−2)=0.
(b) x=−2,x=−1,x=1,x=2. The easiest way to solve this is by setting e.g. x2=u.