Exercises 1

This page allows you to practice some exercises on Solving Equations. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

Question 1

Solve each of the following equations. (a) 4x+2(x4)3=2(3x5)14x + 2(x-4) - 3 = 2(3x -5) - 1

(b) (3x1)2+(4x+1)2=(5x1)(5x+1)+1(3x - 1)^2 + (4x + 1)^2 = (5x - 1)(5x + 1) + 1

(c) x3x+3=x4x+4\frac{x-3}{x+3} = \frac{x-4}{x+4}

(d) 3x32x+3=9x29\frac{3}{x-3} - \frac{2}{x+3} = \frac{9}{x^2 - 9}

(e) 2x/(1x)1+x=62x+1\frac{2 - x/(1-x)}{1+x} = \frac{6}{2x + 1}

(f) 12(x234)14(1x3)13(1x)=13\frac{1}{2}\left(\frac{x}{2} - \frac{3}{4}\right) - \frac{1}{4}\left(1 - \frac{x}{3}\right) - \frac{1}{3} (1-x) = -\frac{1}{3}

Show answer

(a) Any xx is a solution.

(b) x=1x = −1.

(c) x=0x = 0.

(d) x=6x = −6.

(e) x=4x = 4.

(f) x=15/16.x = 15/16.

Question 2

Solve the following equations for the indicated variables. (a) 12py1/2w=0for y\frac{1}{2}py^{-1/2} - w = 0 \quad \text{for } y

(b) 1+z+az1+z=0for z\sqrt{1 + z} + \frac{az}{\sqrt{1+z}} = 0 \quad \text{for } z

(c) (3+a2)x=1for x(3 + a^2)^{x} = 1 \quad \text{for } x

(d) pq3q=5for p\sqrt{pq} - 3q = 5 \quad \text{for } p

(e) 12K1/2L1/414L3/4K1/2=rwfor L\frac{\frac{1}{2}K^{-1/2}L^{1/4}}{\frac{1}{4}L^{-3/4}K^{1/2}} = \frac{r}{w} \quad \text{for } L

(f) 12pK1/4(12rw)1/4=rfor K\frac{1}{2}pK^{-1/4}\left(\frac{1}{2} \frac{r}{w} \right)^{1/4} = r \quad \text{for } K

Show answer

(a) y=p24w2y = \frac{p^2}{4w^2}.

(b) z=11+az = -\frac{1}{1+a}.

(c) x=0x = 0.

(d) p=(3q+5)2/q.p = (3q + 5)^2/q.

(e) L=rK/2wL = rK /2w.

(f) K=132p4r3w1=p4/(32r3w)K = \frac{1}{32}p^{4}r^{-3}w^{-1} = p^{4} / (32r^{3}w).

Question 3

Solve the following quadratic equations, if they have solutions. (a) x(x+1)=2x(x1)x(x+1) = 2x(x-1)

(b) x24x+4=0x^2 - 4x + 4 = 0

(c) 14x2+12x+12=0-\frac{1}{4}x^2 + \frac{1}{2}x + \frac{1}{2} = 0

(d) x(x5)3=0x(x-5) - 3 = 0

(e) z2+(32)z=6z^2 + (\sqrt{3} - \sqrt{2})z = \sqrt{6}

(f) y23y+2=0y^2 - 3y + 2 = 0

(g) 9y2+42y+44=09y^2 + 42y + 44 = 0

Show answer

(a) x=0x = 0 and x=3x = 3.

(b) x=2x = 2. Note that x24x+4=(x2)2x^2 − 4x + 4 = (x − 2)^2.

(c) 14x2+12x+12=14[x(1+3)][x(13)]=0−\frac{1}{4}x^2 + \frac{1}{2}x + \frac{1}{2} = −\frac{1}{4} \left[x − (1 + \sqrt{3})\right]\left[x − (1 − \sqrt{3}) \right] = 0 for x=1±3x = 1 ± \sqrt{3}.

(d) x25x3=[x12(5+37)][x12(537)]=0x^2 − 5x − 3 = \left[x − \frac{1}{2}(5 + \sqrt{37}) \right] \left[x − \frac{1}{2}(5 − \sqrt{37}) \right] = 0 for x=12(5±37)x = \frac{1}{2}(5 \pm \sqrt{37}).

(e) z=3,z=2z = −\sqrt{3}, z = \sqrt{2}.

(f) y=1,y=2y = 1, y = 2.

(g) y=13(7±5)y = \frac{1}{3}( −7 \pm \sqrt{5}).

Question 4

In a right-angled triangle, the hypotenuse is 3434 cm. One of the short sides is 1414 cm longer than the other. Find the lengths of the two short sides.

Show answer

The length xx of the shortest side satisfies x2+(x+14)2=342x^2 + (x + 14)^2 = 34^2 , or 2x2+28x=1156196=9602x^2 + 28x = 1156 − 196 = 960, or x2+14x480=0x^2 + 14x - 480 = 0. The lengths are 1616 cm and 3030 cm.

Question 5

(a) x34x=0x^3 - 4x = 0

(b) x45x2+4=0x^4 - 5x^2 + 4 = 0

Show answer

(a) x=2,x=0,x=2.x = −2, x = 0, x = 2. Note that x(x24)=0x(x^2 − 4) = 0 or equivalenty, x(x+2)(x2)=0x(x + 2)(x − 2) = 0. (b) x=2,x=1,x=1,x=2.x = −2, x = −1, x = 1, x = 2. The easiest way to solve this is by setting e.g. x2=ux^2 = u.

Last updated