Exercises 3

This page allows you to practice some exercises on Algebra. If you notice that you have difficulties, we advise you to go over the corresponding sections in the book.

Question 18

Determine xx such that the following expressions hold true:

(a) 32x=5|3 − 2x| = 5

(b) x2|x| ≤ 2

(c) x21|x − 2| ≤ 1

(d) 38x5|3 − 8x| ≤ 5

(e) x>2|x| > \sqrt{2}

(f) x221|x^2 − 2| ≤ 1

Show answer

(a) x=1x = −1 and x=4x = 4.

(b) 2x2−2 ≤ x ≤ 2.

(c) 1x31 ≤ x ≤ 3.

(d) 1/4x1−1/4 ≤ x ≤ 1.

(e) x>2x > \sqrt{2} or x<2x < − \sqrt{2}.

(f) 1x221−1 ≤ x^2 − 2 ≤ 1, so 1x231 ≤ x^2 ≤ 3, implying that 3x1 −\sqrt{3} ≤ x ≤ −1 or 1x31 ≤ x ≤ \sqrt{3}.

Question 19

A customer orders an iron bar whose advertised length is 55 metres, but with a tolerance of 11 mm. That is, the bar’s length may not deviate by more than 11 mm from what is stipulated. Write a specification for the bar’s acceptable length xx in metres:

(a) by using a double inequality;

(b) with the aid of an absolute-value sign.

Show answer

(a) 4.999<x<5.0014.999 < x < 5.001.

(b) x5<0.001|x - 5| < 0.001.

Question 20

Solve the following inequalities:

(a) 2<3x+12x+42 < \frac{3x + 1}{2x + 4}

(b) 120n+1.11.85 \frac{120}{n} + 1.1 ≤ 1.85

(c) g22g0g^2 − 2g ≤ 0

(d) 1p2+3p24p+40\frac{1}{p − 2} + \frac{3}{p^2 − 4p + 4} ≥ 0

(e) x+2x1<0\frac{x+2}{x-1} < 0

(f) (x1)(x+4)>0(x-1)(x+4) > 0

(g) (x1)2(x+4)>0(x-1)^2 (x+4) > 0

(h) (x1)3(x2)0(x-1)^3 (x-2) \leq 0

(i) x3x+3<2x1\frac{x-3}{x+3} < 2x - 1

(j) x3+2x2+x0x^3 + 2x^2 + x \leq 0

Show answer

(a) 7<x<2−7 < x < −2.

(b) n160n ≥ 160 or n<0n < 0.

(c) 0g20 ≤ g ≤ 2.

(d) p1p ≥ −1 and p2p \neq 2.

(e) 2<x<1−2 < x < 1.

(f) x<4x < −4 or x>1x > 1.

(g) x>4x > −4 and x1x \neq 1.

(h) 1x21 ≤ x ≤ 2.

(i) 3<x<2−3 < x < −2 or x>0x > 0.

(j) x0 x \leq 0.

Question 21

Solve the inequality (1x1)÷(1x+1)1\left( \frac{1}{x} − 1 \right) \div \left( \frac{1}{x} + 1 \right) ≥ 1.

Show answer

1<x<0 -1 < x < 0.

Question 22

Evaluate the following sums:

(a) i=110i\sum_{i=1}^{10} i

(b) k=26(53k2k)\sum_{k=2}^{6} (5 \cdot 3^{k−2} − k)

(c) m=05(2m+1)\sum_{m=0}^{5} (2m + 1)

(d) l=0222l\sum_{l=0}^{2} 2^{2^l}

For the following sums, expand them:

(e) k=222k+2\sum_{k=−2}^{2} 2\sqrt{k + 2}

(f) i=03(x+2i)2\sum_{i=0}^{3} (x + 2i)^2

Show answer

(a) 1+2+3++10=551 + 2 + 3 + \ldots + 10 = 55.

(b) (5302)+(5313)+(5324)+(5335)+(5346)=585(5 \cdot 3^0 − 2) + (5 \cdot 3^1 − 3) + (5 \cdot 3^2 − 4) + (5 \cdot 3^3 − 5) + (5 \cdot 3^4 − 6) = 585.

(c) 1+3+5+7+9+11=361 + 3 + 5 + 7 + 9 + 11 = 36.

(d) 220+221+222=21+22+24=222^{2^0} + 2^{2^1} + 2^{2^2} = 2^1 + 2^2 + 2^4 = 22.

(e) 20+21+22+23+24=2(3+2+3)2\sqrt{0} + 2\sqrt{1} + 2\sqrt{2} + 2\sqrt{3} + 2\sqrt{4} = 2(3 + \sqrt{2} + \sqrt{3}).

(f) (x+0)2+(x+2)2+(x+4)2+(x+6)2=4(x2+6x+14).(x + 0)^2 + (x + 2)^2 + (x + 4)^2 + (x + 6)^2 = 4(x^2 + 6x + 14).

Question 23

Express the following sums in summation notation:

(a) 4+8+12+16++4n4 + 8 + 12 + 16 + \cdots + 4n

(b) 13+23+33+43++n31^3 + 2^3 + 3^3 + 4^3 + \cdots+ n^3

(c) 113+1517++(1)n12n+11 − \frac{1}{3} + \frac{1}{5} − \frac{1}{7} + \cdots+ (−1)^n \frac{1}{2n+1}

(d) ai1b1j+ai2b2j++ainbnja_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}

(e) ai3bi+3+ai+14bi+4++ai+pp+3bi+p+3a^3_i b_{i+3} + a^4_{i+1} b_{i+4} + \cdots + a^{p+3}_{i+p} b_{i+p+3}

Show answer

(a) k=1n4k\sum_{k=1}^{n} 4k.

(b) k=1nk3.\sum_{k=1}^{n} k^3.

(c) k=0n(1)k12k+1\sum_{k=0}^{n} (-1)^{k} \frac{1}{2k + 1}.

(d) k=1naikbkj\sum_{k=1}^{n} a_{ik}b_{kj}.

(e) k=0pai+kk+3bi+k+3\sum_{k=0}^{p} a_{i+k}^{k+3}b_{i+k+3}.

Question 24

Insert the appropriate limits of summation in the right-hand side of the following sums:

(a) k=110(k2)tk=m=??mtm+2\sum_{k=1}^{10} (k − 2)t^k = \sum_{m=?}^{?} mt^{m+2}

(b) n=0N2n+5=j=??322j1\sum_{n=0}^{N} 2^{n+5} = \sum_{j = ?}^{?} 32 \cdot 2^{j−1}

Show answer

(a) k=110(k2)tk=m=18mtm+2\sum_{k=1}^{10} (k − 2)t^k = \sum_{m=-1}^{8} mt^{m+2}.

(b) n=0N2n+5=j=1N+1322j1\sum_{n=0}^{N} 2^{n+5} = \sum_{j = 1}^{N+1} 32 \cdot 2^{j−1} (as 25=322^5 = 32).

Question 25

Since early 20202020, the European Economic Area (EEA) consists of 3030 nations, who have agreed in principle to the free mobility of persons throughout the area. For the year 20252025, let cijc_{ij} denote an estimate of the number of persons who will move from nation ii to nation jj, for each iji \neq j. If, say, i=25i = 25 and j=10j = 10, then we write c25,10c_{25,10} for cijc_{ij}. Explain the meaning of the two sums:

(a) j=130cijand\sum_{j=1}^{30} c_{ij} \quad \text{and} \quad (b) i=130cij\sum_{i=1}^{30} c_{ij}.

Show answer

(a) The total number of people moving from nation ii within the EEA.

(b) The total number of people moving to nation jj within the EEA.

Question 26

Decide which of the following equalities are generally valid:

(a) k=1nck2=ck=1nk2\sum_{k=1}^{n} ck^2 = c \sum_{k=1}^{n} k^2

(b) (i=1nai)2=i=1nai2\left( \sum_{i=1}^{n} a_i \right)^2 = \sum_{i=1}^{n} a_i^2

(c) j=1nbj+j=n+1Nbj=j=1Nbj\sum_{j=1}^{n} b_j + \sum_{j=n+1}^{N} b_j = \sum_{j=1}^{N} b_j

(d) k=375k2=k=045k+1\sum_{k=3}^{7} 5^{k−2} = \sum_{k=0}^{4} 5^{k+1}

(e) i=0n1ai,j2=k=1nak1,j2\sum_{i=0}^{n-1} a_{i,j}^{2} = \sum_{k=1}^{n} a^2_{k−1,j}

(f) k=1nak/k=1kk=1nak\sum_{k=1}^{n} a_k/k = \frac{1}{k} \sum_{k=1}^{n} a_k

Show answer

Always true: (a), (c), (d), and (e).

Generally not true: (b) and (f).

Question 27

Expand and compute the following double sum: i=13j=14i3j\sum_{i=1}^{3} \sum_{j=1}^{4} i \cdot 3^{j}.

Show answer

i=13j=14i3j=i=13(i3+i9+i27+i81)=i=13120i=720.\sum_{i=1}^{3} \sum_{j=1}^{4} i \cdot 3^{j} = \sum_{i=1}^{3} (i \cdot 3 + i \cdot 9 + i \cdot 27 + i \cdot 81) = \sum_{i=1}^{3} 120i = 720.

Question 28

Consider a group of individuals each having a certain number of units of mm different goods. Let aija_{ij} denote the number of units of good ii owned by person jj, for i=1,,mi = 1, \ldots , m and for j=1,,n j = 1, \ldots , n. Explain in words the meaning of the following sums:

(a) j=1naij\sum_{j=1}^{n} a_{ij}

(b) i=1maij\sum_{i=1}^{m} a_{ij}

(c) j=1ni=1maij\sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}

Show answer

(a) The total number of units of good i.i.

(b) The total number of units of all goods owned by person j.j.

(c) The total number of units of goods owned by the group as a whole.

Last updated